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ABSTRACT

Cycle Generative Adversarial Network (CycleGAN) for voice
conversion (VC) task only used discriminators to identify
whether the input voice is generated or real. It means the
confrontational does not check the similarity with the target
voice, leading the generated voice not much similar to the
target. In this paper, instead of vocal checking, we propose to
enhance the confrontation to target similarity checking that
addresses this problem. A Cycle Generative Enhanced Ad-
versarial Network (CycleGEAN) was introduced to make the
original two discriminators to target classifier and non-target
classifier. The target classifier aims to identify whether the
target speaks the input voice or not. Similarly, the non-target
classifier identifies the non-target voice. Furthermore, we add
a gradient reversal layer with different operations for target
and non-target. Then in each GAN, we used both classifiers.
One is the discriminator, and the other is trained for using
in another GAN. In experiments, the proposed method com-
pare to CycleGAN improves Mean Opinion Score (MOS)
of 0.1 and Voice Similarity Score (VSS) of 0.2 on the Voice
Conversion Challenge 2018 (VCC2018) dataset.

Index Terms— voice conversion, adversarial training,
speech synthesis, gradient reversal, generative adversarial
network

1. INTRODUCTION

The voice conversion (VC) task aims to convert the content of
non-target speech to sound like the target person. According
to the different training datasets, the parallel dataset and the
non-parallel dataset [1], the voice conversion methods can be
roughly divided into two parts. The Parallel dataset means a
dataset composed of several pairs of speeches with the same
content [2, 3]. The non-parallel dataset means the two input
speech has different content [4, 5, 6, 7].

For parallel datasets, the previous research proposes first
to encode the two input voices and then find a map func-
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tion to convert them[8, 9, 10, 11]. The vector quantization-
based codebook of voice is used to encode the voice to vec-
tor in two-dimensional coordinates[12, 13]. But the encoding
method is highly influenced by the unbalance labels to lead
the unsmooth mapping[14]. Stylianou et al. [15, 16]propose
to use the Gaussian mixture model instead of the codebook
encoding to address that problem. To begin with, the method
is trained by the expectation-maximization algorithm to learn
the speaker’s speech distribution. In addition, the parame-
ters of the model can be simplified by using the least-squares
method to get a diagonal matrix. Finally, the target trans-
fer function obtains by the matrix. But the model leads the
conversion result is too smooth to affect the corresponding
outcome.

For non-parallel datasets, because there is no correspond-
ing data, the mapping methods is hard to use. The gener-
ative model is one of the methods to address the problem
[17, 18, 19]. They encode unsupervised information and
model target distributions, such as the auto-encoding model
[20, 21, 22] and generative adversarial networks [23, 24, 25].
Hsu et al. [26]train non-parallel dataset based on variational
auto-encoding Wasserstein Generative Adversarial Networks
(VAW-GAN). The model uses the different speakers’ tim-
bre features to reconstruct the source speech to learn the
same content for different representations. After the training
step, the model generates the converted voice by input the
speaker’s voice and the target speaker’s identity information.
Furthermore, this model also provides ideas for how to con-
vert speech between multiple speakers [27]. Kaneko et al.
[28]propose to use Cycle-consistent Generative Adversarial
Networks (CycleGAN) in the computer vision task. The
idea of CycleGAN is using the two generative adversarial
networks (GAN) to map non-target timbres to target timbres
[29, 30, 31, 32, 33, 34]. GAN consists of a generator used
to generate voice and reconstruct voice, and a discriminator,
which is used to identify the input voice, is generated or real.
The training process is called adversarial training, as it aims
to achieve the balance of the generator and the discrimina-
tor. We will fully discuss the CycleGAN in Section 2. Even
though the CycleGAN used in VC achieves better perfor-
mance than previous models, the generated voice is also not
much similar to the target. Because the discriminator of GAN
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is only used to identify the voice is real or not, it did not
consider the similarity of generated voice and target voice.
It means if the generated voice is similar to the non-target
voice, the discriminator also believes the voice is as good as
the real voice. However, the result violates the VC target as
the synthesis voice needs similar to the target voice, not just
like the real voice.

To address the GAN is hard to identify the target voice,
inspired by the image-to-image conversion work [35], we
aim to enhance the confrontation in CycleGAN and propose
to Cycle Generative Enhanced Adversarial Network (Cy-
cleGEAN) model. As shown in Figure 2, the CycleGEAN
consists of two speaker classifiers, C1, C2, and two genera-
tors, GAB , GBA, combining an encoder with a decoder. To
enhance the confrontation, primarily, we design a classifier
with the gradient reversal layer. With the help of the gradi-
ent reversal layer, the CycleGEAN can directly optimize the
one-loss function to improve the generators. Furthermore, we
use two classifiers in each GAN and one is the discriminator,
the other is trained for another GAN. In the experiment on
the Voice Conversion Challenge 2018 (VCC2018) dataset,
the results indicate that the proposed CycleGEAN outper-
forms other methods on Mean Opinion Score (MOS) and
Voice Similarity Score (VSS). Our main contributions are as
follows:

• We propose to enhance the confrontation of CycleGAN
that to address the generated voice is not similar to
the target. We first construct the Cycle Generative En-
hanced Adversarial Network (CycleGEAN). Moreover,
the proposed CycleGEAN is able to achieve the VC tar-
get without the parallel dataset.

• We improve the discriminator of CycleGAN to add a
gradient reversal layer. Furthermore, the gradient re-
versal layer has different actions for target voice and
non-target voice.

• To enhance the confrontation, we also improve the
training process of CycleGAN. We make the discrimi-
nator of a GAN is training in the other GAN process to
improve the classifier performance.

2. PRELIMINARY WORK

2.1. Cycle Generative Adversarial Network

Cycle Generative Adversarial Network (CycleGAN) [23] as
shown in Figure 1 is a neural network composed of two GANs
that can learn the conversion functions between two types
data in two domains. The first function is GAB(x) and it
lets the pointed sample set x ∈ A become to the set be-
long to x̃ ∈ B. The second function GBA(y) could trans-
fer the sample set y ∈ B to the sample set ỹ ∈ A. More-
over, each generator is associated with a discriminator that

(a) Non-target training process in CycleGAN

(b) Target training process in CycleGAN

Fig. 1. The architecture of the CycleGAN used in VC.

learns to distinguish the actual data y from the synthetic data
x̃ = GAB(x). Therefore, the CycleGAN consists of two
generatorsGAB(x), GBA(y) and two discriminatorsDx, Dy ,
which the main purpose is to learn the transformation func-
tions GAB and GBA. Among them, the function of Dx is
to discriminate y from GAB(x), and the function of Dy is to
discriminate x from GBA(y).

Each GAN generator will learn its corresponding transfor-
mation function by minimizing losses (GAB or GBA). The
generator loss is calculated by measuring the difference be-
tween the generated data and the target data. The greater the
difference, the higher the penalty the generator will receive.
Discriminator losses are also used to train discriminators to be
good at distinguishing real and synthetic data. When the two
are set together, they will improve each other. The generator
is trained to deceive the discriminator, and the discriminator
will be trained to better distinguish real data from synthetic
data. As a result, the generator will be very good at trans-
forming the required data. What’s more, CycleGAN will try
to minimize the sum of two GANs losses to transform the
GAB and GAB . Cycle consistency reduces the possible set of
maps that these networks can learn and forces GAB and GBA

to perform opposite transformations. The total loss function
of discriminators,Dx, Dy in CycleGAN is the sum of the loss
function of two standard discriminators of GAN. The total
loss function of generators, GAB , GBA in CycleGAN is dis-
cussed in detail in the following content.
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2.2. Loss Function of Generators in CycleGAN

In generally, the loss function LossGAN (GAB , Dx) of gen-
erator GAB in first standard generative adversarial network is
calculated as follows:

LossGAN (GAB , Dx) =E[log(Dx(x))]

+ E[log(1−Dx(GAB(x)))]
(1)

Meanwhile, the loss function LossGAN (GBA, Dy) of
generator GBA in second standard generative adversarial
network is calculated as follows:

LossGAN (GBA, Dy) =E[log(Dy(y))]

+ E[log(1−Dy(GBA(y)))]
(2)

Besides, because the above two loss function could not
guarantee the consistency in cycle, CycleGAN adds a loss
function LossCycle, named cycle-consistency loss as follows:

LossCycle =E[GAB(GBA(y))− y]

+ E[GBA(GAB(x))− x]
(3)

What’s more, to make the pointed part be mapped, the
code of CycleGAN increases another loss functionLossIdentity,
named identity loss as follows:

LossIdentity =E[GBA(x)− x] + E[GAB(y)− y] (4)

Therefore, the total loss Losstotal of generators in Cycle-
GAN is summarized as follows:

Losstotal =LossGAN (GAB , Dx)

+ LossGAN (GBA, Dy)

+ λLossCycle + βLossIdentity

(5)

3. PROPOSED METHOD

In this paper, the CycleGEAN aims at transferring speech
content by non-target to speech sounding like the target
speaker. The overall framework of our proposed CycleGEAN
for VC is shown in Figure 2. In our proposed method, the
CycleGEAN contains two speaker classifiers, C1, C2, two
generators GAB , GBA, and the non-target speech and target
speech are treated differently in CycleGEAN. The speaker
classifier will have different methods of processing gradient
for non-target speech and target speech. The details about
CycleGEAN discuss in this section.

3.1. Generators in CycleGEAN

Figure 2 shows there are two generators in CycleGEAN. We
will introduce them in this section.

GeneratorGAB . The best target ofGAB aims to generate
a voice same with original B. In the training process, the input

voice set is the original A signal or the generated A. Because
we want to transfer the voice from A to B. Specifically, in the
non-target speech training process, the best target of GAB is
to make Speaker Classifier C2 believe generated Ã voice is
same with B. For the target speech training process, the best
target of GAB is to generate the B̂ voice from B̃ same with
B. The difference between generated B̂ and original B voice
is a part of cycle loss, E[GAB(GBA(B))−B].

GeneratorGBA. The best target ofGBA aims to generate
a voice same with original A. In the training process, the input
voice set be the original B signal or the generated B. Because
we want to transfer the voice from B to A. Specifically, in
the target speech training process, the best target of GBA is
to make Speaker Classifier C1 believe generated B̃ voice is
same with A. For the non-target speech training process, the
best target of GBA is to generate the voice from Ã same with
A. The difference between generated Â and original A voice
is a part of cycle loss, E[GBA(GAB(A))−A].

We set the cycle-consistency loss consist by difference be-
tween generated B̂ and original B voice is a part of cycle loss
and the difference between generated Â and original A voice.
The equation is computing as follows:

LCycle =E[GAB(GBA(B))−B]

+ E[GBA(GAB(A))−A]
(6)

Besides, we set identity loss to make the generator create
only the target voice. Identity loss, LIdentity, is the difference
between the generated voice, which inputting real voice, and
real voice. Because the aim of GAB is to generate the voice
mimic real B, and GBA is to generate the voice mimic real A.
If we give the real voice into GAB or GBA, the ideal situa-
tion is both generators directly output the voice without any
operation. The equation is computing as follows:

LIdentity =E[GBA(A)−A] + E[GAB(B)−B] (7)

3.2. Speaker Classifiers in CycleGEAN

Figure 2 shows there are two speaker classifiers in Cy-
cleGEAN. We will introduce them in this section.

Speaker Classifier C1. The best target of C1 aims to
identify the input voice whether spoken by A or not. The
classifier is trained by directly input only Speech A in the
non-target speech training process. And applied the C1 in
the target speech training process to classify the generated A
voice by GBA, B̃, and real A voice. The best target of C1 is
able to identify all of the B̃ is not A. The equations of calcu-
lating two probabilities P0,P1 for B̃ and real A is as follow:

P = (P0,P1) =C1

(
A, B̃; θC1

)
(8)

=C1 (A,GBA (B; θBA) ; θC1) (9)

where θC1
is the parameter of the speaker classifier C1. θBA

is the parameter of the generator GBA.
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(a) Non-target training process in CycleGEAN (b) Target training process in CycleGEAN

Fig. 2. The architecture of the Cycle Generative Enhanced Adversarial Network. GAB represents the GeneratorAB , GBA

represents the GeneratorBA, C1 represents the Classifier1, and C2 represents the Classifier2. The red boxes are parts of
enhancing the confrontation proposed in this paper.

The speaker classifier C1 and the generator GBA are
jointly trained with the speaker classification loss:

LC1
(θBA, θC1

) = Lnon−target + Ltarget,

Lnon−target = −Π(yspeaker == 0) logP0,

Ltarget = −Π(yspeaker == 1) logP1.

(10)

where Π(·) is the indicator function, yspeaker is the speaker
who produced the input data, Lnon−target is the classification
loss of non-target speakers, Ltarget is the classification loss of
target speaker.

In speaker classifier C1, we design different way of gra-
dient reversal for target and non-target. The gradient back-
propagated from the speaker classifier C1 is designed as fol-
low:

F (
∂LC1

∂θBA
) =

∂Lnon−target

∂θBA
− λ∂Ltarget

∂θBA
(11)

where F (·) is the mapping function of gradient reversal layer.
λ is the weight adjustment parameters.

Speaker Classifier C2. The best target of C2 aims to
identify the input voice whether spoken by B or not. The
classifier is trained by directly input the only Speech B in
the target speech training process. And applied the C2 in the
non-target speech training process to classify the generated B
voice by GBA, Ã, and real B voice. The best target of C2 is
able to identify all of the Ã is not B. For the speaker classi-
fier C2, the entire process is similar with the speaker classi-
fier C1. The speaker classifier C2 takes the input speech B
and the output Ã of generator GAB . The equations of cal-
culating two probabilities P ′0,P ′1 for non-target speakers and
target speaker in CycleGEAN is as follow:

P = (P ′0,P ′1) =C2

(
B, Ã; θC2

)
(12)

=C2 (B,GAB (A; θAB) ; θC2
) (13)

where θC2 is the parameter of the speaker classifier C2. θAB

is the parameter of the generator GAB .
The speaker classifier C2 and the generator GAB are

jointly trained with the speaker classification loss:

LC2
(θAB , θC2

) = Lnon−target + Ltarget,

Lnon−target = −Π(yspeaker == 0) logP ′0,
Ltarget = −Π(yspeaker == 1) logP ′1.

(14)

where Π(·) is the indicator function, yspeaker is the speaker
who produced the input data, Lnon−target is the classification
loss of non-target speakers, Ltarget is the classification loss of
target speaker.

In speaker classifier C2, we design different way of gra-
dient reversal for target and non-target. The gradient back-
propagated from the speaker classifier C2 is designed as fol-
low:

F (
∂LC2

∂θAB
) = −λ∂Lnon−target

∂θAB
+
∂Ltarget

∂θAB
(15)

where F (·) is the mapping function of gradient reversal layer.
λ is the weight adjustment parameters.

3.3. Training Process

In the training process, parameters θC1
is optimized to mini-

mize the classification loss to identify the non-target speaker
A and target speaker B, whereas θBA is updated with gra-
dient reversal. This mini-max competition on target will fi-
nally converge when the output of generators GBA is suffi-
ciently similar non-target speaker such that the classifier can
not identify the target speaker. Meanwhile, parameters θC2

are optimized to minimize the classification loss to identify
the non-target speaker A and target speaker B, whereas θAB

is updated with gradient reversal. Thus, this mini-max com-
petition on non-target will finally converge when the output
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of generators GAB is sufficiently similar target speaker such
that the classifier can not identify the non-target speaker.

With a multi-task learning fashion, the generators GAB ,
GBA are trained jointly with the speaker classifiers C1, C2,

L(θAB , θBA, θC1 , θC2) = LCycle(θAB , θBA)

+ LIdentity(θAB , θBA)

+ Lnon−target(θBA, θC1)

− λLtarget(θBA, θC1)

− λLnon−target(θAB , θC2)

+ Ltarget(θAB , θC2)

(16)

where θBA is the parameters of the generator GBA, θAB is
the parameters of the generator GAB , LCycle(θAB , θBA) is
the error between final generated output and original ground
truth. LCycle(θAB , θBA) is to let the content in transferred
speech as possible as be same with the content in original
speech.

Therefore, parameters θAB , θBA, θC1
, θC2

are updated
though back-propagation as follow:

θAB ← θAB − µ
(
∂LCycle

∂θAB
+
∂LIdentity

∂θAB
+ F (

∂LC2

∂θAB
)

)
(17)

θBA ← θBA − µ
(
∂LCycle

∂θBA
+
∂LIdentity

∂θBA
+ F (

∂LC1

∂θBA
)

)
(18)

θC1 ← θC1 − µ
∂LC1

∂θC1

(19)

θC2 ← θC2 − µ
∂LC2

∂θC2

(20)

where µ is the learning rate. Due to the gradient reversal layer,
the gradient reversal maximizes Lnon−target in LC2 for θAB

and minimizesLtarget inLC2 whileLC2 is always minimized
for optimize the θAB . And the gradient reversal maximizes
Ltarget in LC1

for θBA and minimizes Lnon−target in LC1

while LC1
is always minimized for optimize the θBA.

4. EXPERIMENTS

4.1. Dataset

We carry out the experiments on a parallel-data-free dataset of
VCC2018 dataset [1], which is recorded by professional US
English speakers. We set the VCC2SF3 (SF3) and VCC2SM3
(SM3) as our source, VCC2TF1 (TF1) and VCC2TM1 (TM1)
as our target, where S represents the source, T represents the
target, F means female, M means male. By using the four
speakers’ speech, we set four tests, Female to Female (SF3-
TF1), Female to male (SF3-TM1), Male to Female (SM3-
TF1), and Male to Male (SM3-TM1). We split the dataset
into short sentences for all audio files of each speaker. These

sentences are divided into two parts, 35 sentences as the eval-
uation dataset and 81 sentences as the training dataset. All
speech data is sampling at 16000 Hz. There is no same con-
tent in the training and evaluation dataset to keep the non-
parallel setting. When testing the transferred speech, we eval-
uate the similarity between original speech and transferred
speech using the index on Voice Similarity Score (VSS) and
the speech quality on Mean Opinion Score (MOS).

4.2. Model Configuration

The earliest success on the CycleGAN model is shown in the
image domain. Now the CycleGAN is also applied in voice
conversion[28]. The generators in the cycle metabolic net-
work are the same as in the previous work. The discrimi-
nator network only changes the dimension of the last fully-
connected network to two, representing the probability for
non-target and target speaker. However, the loss function of
the cycle metabolic network is very different from the Cy-
cleGAN. The loss of speaker classifier with gradient rever-
sal layer is directly added into the total loss function. The
gradient reversal layer would gradually guide the correspond-
ing generator to transfer the input data to needful data when
increasing the training process. Our proposed model was
trained on a single NVIDIA V100 GPU. We pre-train tradi-
tional CycleGAN on the dataset and then load the parameter
into the CycleGEAN. In order that the transferred speech and
original speech are basically the same on the content, we set
that the weight of identity loss is 5 and the weight of cycle loss
is 10. The total epoch is set to 5000. Meanwhile, the decay
of the learning rate is pointed at 5 ∗ 10−6 every epoch. Fol-
lowing [36], we gradually changed the parameter λ in speaker
classifier from 0 to 1 as follows:

λ =
2

1 + exp(−10 · k)
− 1 (21)

where k is the percentage of the training process. We train
our model with batch size of 1 samples, and use the Adam
optimizer with β1 = 0.5, β2 = 0.999, ε = 10−8. We adopt
the learning rate of 2 ∗ 10−4.

4.3. Subjective Evaluation Setting

In evaluation of our model and previous work, we set the
MOS and VSS testing1. MOS means to identify whether the
converted voice clear or not. VSS aims to determine the most
similar to the real voice.

Both MOS and VSS are obtained by asking native speak-
ers to rate for the output audio clips. We have 30 peoples with
an equal number of men and women. About the knowledge
background, 10 testers have voice field knowledge. Other
people involved in the test work in other fields, such as Nature
Language Processing, Product Manager, Psychology, etc.

1Demos is shown on https://tts-sci-zhangxulong.github.io/CGEAN-VC/.
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Table 1. The MOS and VSS of different models in compared study.

Method Female(SF3)-Female(TF1) Female(SF3)-Male(TM1) Male(SM3)-Female(TF1) Male(SM3)-Male(TM1)
MOS VSS MOS VSS MOS VSS MOS VSS

Ground Truth 4.55± 0.18 — 4.52± 0.21 — 4.60± 0.15 — 4.60± 0.14 —
CycleGAN-VC[28] 4.07± 0.43 4.01± 0.65 2.10± 0.65 1.90± 0.36 4.05± 0.46 2.01± 0.85 4.00± 0.44 3.35± 0.73

CycleGAN-VC2[24] 4.25± 0.33 4.33± 0.22 3.15± 0.74 2.79± 0.76 4.07± 0.34 2.86± 1.06 4.13± 0.45 3.68± 0.67
CycleGEAN 4.33 ± 0.13 4.34 ± 0.22 3.20 ± 0.19 2.90 ± 0.98 4.15 ± 0.14 3.19 ± 1.10 4.28 ± 0.24 3.71 ± 0.40

MOS test. We give the tester four type of voices, in-
cluding the ground truth, CycleGAN, CycleGAN2, and our
method. In each of type, we give four voice for each type of
generated voices. It means there are total 64 voice that the
tester need to listen.

VSS test. We set eight groups for testing. Each group has
three voices, including the CycleGAN, CycleGAN2, and our
method. Besides, we will tell them the ground truth voice.
For each group, testers need to give the 0-5 marks, 5 means
the generate voice is most similar to ground truth.

4.4. Result discussion

4.4.1. Comparison of Converted Speech on MOS and VSS

A comparison of converted speech on MOS between our
model and other models is shown in Table 1. From the result
on four transferring conditions, (SF3-TF1, SF3-TM1, SM3-
TF1, SM3-TM1), we can find that the converted speech from
our model is better than both CycleGAN and CycleGAN-
VC2 on MOS and VSS. Our model average improves by
about 0.1 marks in MOS.

What is surprising is that both MOS and VSS voice con-
version from different gender, Male to Female or Female to
Male, achieves low marks. Especially, VSS of the SF3-TM1
is the lowest, all models smaller than 3. A possible expla-
nation for this might be that the pitch of males and females
has significant differences. It means it is hard for the model
to convert voice. Nevertheless, our model also improves by
about 0.1 marks on MOS and 0.3 marks on VSS than previ-
ous work.

The variance in the MOS test is significant. It because
some of the testers compared the current listening voice to the
best previous voices. They will give low marks if the voice is
not better. Furthermore, part of the testers gives low marks,
such as 3.9 marks for ground truth male voice. Some intervie-
wees argued that they think compared to female voices, these
voices are muffled. They do not think the muffled voice is
clear. There is a similar reason for the significant difference
in variance of VSS.

4.4.2. Comparison of Mel-spectrogram on Similarity

As the more similar mel-spectrogram, the more similar to the
original voice. We compare the mel-spectrogram between
the ground truth, CycleGAN-VC, CycleGAN-VC2, and our

model. Figure 3 shows the result. The x-axis represents the
time of voice, and the y-axis represents the frequency, and the
color means the strength of each frequency.

According to Figure 3, it shows the strength of all gener-
ated voices’ is smaller than the reference voice. We marked
the distinguish different parts as red boxes in Figure 3. From
the pixels shown in the four red boxes, we can find that the
frame from our model is more similar to the ground truth. It
means our generate voice is most similar to the original.

(a) Ground Truth (b) CycleGAN-VC

(c) CycleGAN-VC2 (d) CycleGEAN

Fig. 3. The mel-spectrogram of ground truth, CycleGAN-VC,
CycleGAN-VC2 and CycleGEAN of SF3-TF1. The red box
region shows the significant difference between them.

5. CONCLUSIONS

To differentiate the timbre information and transferred the
voice sounded more like the target speaker, we propose
the Cycle Generative Enhanced Adversarial Network (Cy-
cleGEAN) framework. Enhancing the adversarial can iden-
tify the timbre information of non-target speech to ignore and
focus on learning the timbre information of target speech.
We improve the classifiers to add a gradient reversal layer
and use two classifiers in both GANs. The proposed Cy-
cleGEAN model can directly optimize by a one-loss function
to fine-tune the generators. The experiment results with the
VCC2018 dataset demonstrate that CycleGEAN has about
0.1 marks better performance than other existing models on
MOS and 0.2 marks better on VSS. Furthermore, the Cy-
cleGEAN framework could exploit typical algorithms in dif-
ferent domains, to be adaptive to different tasks may achieve
better performance. And we will further study the potential
applications.
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