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ABSTRACT
Non-parallel many-to-many voice conversion is a kind of
style transfer task in speech. Recently, AutoVC has been
applied in this field as a popular solution, as it can achieve
distribution-matching style transfer by training only the re-
construction loss. However, in order to strike a good balance
between timbre disentanglement and sound quality, AutoVC
requires imposing very strict constraints on the dimension-
ality of the latent representation. This constraint affects the
quality of the converted speech while making it challenging
to apply to other datasets directly. This paper proposes a
new voice conversion framework that uses only one encoder
to obtain timbre and content information by partitioning the
latent space in the channel dimension. Furthermore, two
different types of classifiers and two additional reconstruc-
tion losses are proposed to ensure that different parts of the
latent space contain only separated content and timbre in-
formation, respectively. Experiments on the VCTK dataset
show that the proposed model achieves state-of-the-art re-
sults in terms of the naturalness and similarity of converted
speech. In addition, we experimentally show that for different
division proportions of latent space, the content and timbre
information will always be well separated.

Index Terms— speech synthesis, speech representation
disentanglement, voice conversion, Adversarial learning

1. INTRODUCTION

Voice conversion (VC) is an exciting topic committed to con-
verting one utterance of a source speaker into another utter-
ance of a target speaker by keeping the content in the origi-
nal utterance while replacing it with the vocal features from
the target speaker. If we refer to the timbre information of a
speech as a style, every speaker identities denote as different
style domains. Then VC can be regarded as a style transfer
task applied in speech.

Early VC algorithms, like Gaussian Mixture Model
(GMM) [1, 2], needed a lot of parallel data for model training.
Specifically, we need to collect many paired source-target
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speakers uttering the same utterances to train these models
to achieve VC tasks. Moreover, because these methods often
consider only a mapping between two speaker domains, they
are not scalable to the increasing number of domains, making
them unable to achieve non-parallel many-to-many VC tasks.

To address these problems, more researchers have focused
on the new solutions of non-parallel many-to-many VC. Re-
cently, with the advance of deep learning, a variety of novel
VC methods have been proposed [3, 4, 5, 6]. Among them,
Generative Adversarial Network (GAN) is one of the most
popular methods [7, 8, 9, 10], which could learn a global gen-
erative distribution of the target speech without explicit ap-
proximation. These GAN-based models jointly train a gen-
erator and a discriminator. An adversarial loss derived from
the discriminator encourages the generator outputs to build
indistinguishable from real speech. Thanks to the cycle con-
sistency training, we can train these GAN-based VC models
with non-parallel speech datasets.

Another line of research focused on learning latent repre-
sentations with Autoencoder. In particular, Conditional Varia-
tional Auto Encoder(CVAE) is the most famous. The network
structure of VAE contains an encoder and a decoder. The core
idea is very clear: the encoder learns a specific latent space
from input speech and the decoder outputs a reconstructed
speech from this latent space. In this process, VAE focuses
on how to force the encoder to learn a specific latent space.
So far, many VAE-based models have been successfully ap-
plied to VC [11, 12, 13, 14].

Unfortunately, both GAN-based models and CVAE have
their inherent disadvantages. For example, GAN-based mod-
els can usually achieve a good conversion effect and ensure
distribution matching between the generated and input data.
However, GAN training is very difficult and unstable. On the
contrary, CVAE training is simple and fast enough, but it can
not guarantee distribution matching, which limits CVAE gen-
erate high-quality converted speech [15].

Recently, AutoVC [16] has attracted a lot of attention due
to its simple training process and well performance. It applies
a simple conditional autoencoder with a properly tuned infor-
mation constraining bottleneck to force disentanglement be-
tween the linguistic content and the speaker identity by train-
ing only on self-reconstruction. Compared with the previousIC
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methods, AutoVC can guarantee the distribution matching as
GANs but train as easily as CVAE. However, in order to real-
ize style conversion, it has to introduce a pre-trained speaker
encoder. Besides, the most serious problem is that AutoVC
needs a very harsh limitation on the channel dimensions of
the hidden representations to disentangle content and timbre
information as expected, which would compromise the qual-
ity of the converted speech [17, 18].

Inspired by this, we naturally wonder if there is a new
solution that can achieve the distribution matching as GAN
and trains as easily as CVAE. In addition, compared to Au-
toVC, there is no need to set strict restrictions on the channel
dimensions of hidden representations. This paper proposed
a new voice conversion framework to meet all the above re-
quirements. Specifically, our model is similar to VAE. Au-
toencoder is the main framework of our model, and the com-
mon and adversarial classification tasks are applied to sep-
arate the content and speaker information correctly. Here,
the goal of the common classification task is to encourage
the encoder to extract some features closely related to the
speaker identity, while the adversarial classification task is
designed to eliminate speaker information in latent space to
get speaker-independent features. Experiment results carried
out on VCTK show that the proposed method outperforms
previous works in terms of naturalness and sound similarity.

2. PROPOSED METHOD

In this section, we will introduce the core component of our
proposed framework. Firstly, for every speech x, we use con-
tent embedding Cx to represent linguistic information. In ad-
dition, speaker embedding Sx is proposed to represent timbre
information. U means the set of speakers and a speaker iden-
tity u is a random variable drawn from U . As is illustrated
in Figure 1(a), our framework contains four modules. The
first module is an encoder E, which learns a latent variable
Z from input speech x. Here we expect Z to be a specific
function of estimated content embedding Cx and estimated
speaker embedding Sx. Which can be formulated as:

Z = E(x) = E(f(Cx,Sx)) = Cx ⊕ Sx (1)

where ⊕ means concat operation. In this case, Z contains
both linguistic information and timbre information and when
we divide Z into two parts in the channel dimensions, the first
part is the estimated content embedding Cx while the second
part is the estimated speaker embedding Sx .

Then, we use two speaker classifiers to encourage our en-
coder to output the ideal Z. Specifically, when we divide Z
into two parts in the channel dimensions, the first part is put
into the speaker classifier C1, and the second part is put into a
speaker classifier C2. Noted that there is a Gradient Reversal
Layer (GRL) between the encoder and C1, which will make
the encoder expect to fool the classifier so that it cannot clas-
sify correctly. Moreover, we use the adversarial-classification

(a) Model Training (b) Model inference

Fig. 1. The framework of the proposed Model. Z is the latent
variable, which is divided into two parts in the channel dimen-
sions, namely CX and SX . Here, we assume that CX rep-
resents linguistic information, which is speaker-independent,
and SX represents speaker information, which is closely re-
lated to speaker identity. ŜX is the vector norm of SX .

loss function to constrain this processing. At the same time,
the common-classification loss function was designed to en-
courage the speaker embedding Sxu to be as closely related
to speaker identity u as possible. They can be expressed as:

Ladv-cls (θe, θc1) = −
K∑

k=1

I(u == k) log pk (2)

Lcom-cls(θe, θc2) = −
K∑

k=1

I(u == k) log p′k (3)

Where I(·) is the indicator function, K is the number of
speakers and u denotes speaker who produced speech x,
and pk is the probability of speaker k . During training, for
Lcom-cls , θe and θc2 are all optimized to minimize the clas-
sification loss to better identify the corresponding speaker.
But for Ladv-cls , θc1 are still optimized to minimize the clas-
sification loss, whereas θe are optimized to maximize the
classification loss to fool the classifier. Ideally, under these
two constraints, the latter part of the output of encoder will
be more closely related to speaker information while the first
part of the output of encoder will be sufficiently speaker-
independent so that the classifier can not identify the speaker.
And then, we can easily get the ideal content embedding Cx

and speaker embedding Sx at the same time.
The last module in our framework is a decoder D, which

will output a reconstructed speech x′ from input latent vari-
able Z′. Noted that here the latent variable Z′ is not entirely
the same with Z, because Z′ is created by concatenating Cx

and Ŝx, where Ŝx is upsampled by copying the vector norm
of Sx to restore to the original temporal resolution. Speech
reconstruction loss and code reconstruction loss were intro-
duced to constrain this processing. They can be expressed as:

Lrecon = E[∥x′ − x∥11] Lcode-recon = E[∥Ĉx − Cx∥11]
(4)
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Fig. 2. Architecture of the proposed model. The content
embedding CX and the vector norm of the style embedding
SX are concatenated during training. Noted that ×2 and ×3
means the number of layers in this module.

Where x′ is the reconstructed speech, Ĉx are the content em-
beddings produced by x′. With these loss functions, the full
objective function can be computed as:

L(θe, θd) = Lrecon + αLcode-recon + βLcom-cls + λLadv-cls
(5)

Where α , β, and λ refers to the weight of Lcode-recon, Lcom-cls,
and Ladv-cls respectively.

As shown in Figure 1(b), in inference phase, one utterance
of the source speaker and the target speaker is selected to get
content embedding and speaker embedding respectively. Af-
ter that, we input them into the decoder, and the conversion
speech is then generated.

The network structure of the proposed model is shown in
Figure 2. In our model, the encoder and the decoder have the
same structure, and their design mainly draws on the decoder
of AutoVC. The only difference is that we introduce a linear
layer to control the dimension of the output feature. Besides,
both the common classifier and the adversarial classifier use
two simple fully-connected layers and a softmax layer to pre-
dict the probability for each speaker’s identity according to
the input embedding. Noted that GRL is located between the
encoder and the adversarial classifier. In training, the vector
norm of the estimated speaker embedding is first copied to the
same length as the content embedding and then concatenated
in the channel dimension. The concatenated embedding is
passed into the decoder to generate the reconstructed speech.

3. EXPERIMENTS

In this section, we will evaluate the performance of our
propoded model on traditional many-to-many VC tasks and
one-shot VC tasks. Comparative experiments are conducted
on VCTK [19], a high-fidelity multi-speaker English speech
corpus. This corpus contains 46 hours of speech data pro-
duced by 109 English speakers from different countries. In
our work, 100-speaker recordings are used for model training
and traditional VC testing. Specifically, 30 utterances from
each speaker are used for testing, while the remaining utter-
ances are used for model training. In addition, all recordings
of the other 9 speakers were used for one-shot VC testing.

Before training, the sampling rate of all recordings is re-
sampled to 16KHz, and the mel-spectrograms are computed
through a short-time Fourier transform (STFT) with Hann
windowing, where 1024 for FFT size, 1024 for window size
and 256 for hop size. The STFT magnitude is transformed to
the mel scale using 80 channel mel filter bank spanning 90
Hz to 7.6 kHz. The proposed model is trained with batch size
of sixteen for 200K steps on one NVIDIA V100 GPU, using
the ADAM optimizer with β1 = 0.9, β2 = 0.98. The weight
in Eq.(5) are set to α = 1, β = 0.1, λ = 0.1. StarGAN-VC2,
AutoVC, VAE, and VQVC+ [20] are chosen as the baseline
models. We use a pretrained WaveNet [21] vocoder to convert
the output mel-spectrogram back to the waveform.

3.1. Comparison

To compare the performance of different models in VC tasks,
we use both objective and subjective tests. Specifically, the
Mel-Cepstral Distortion(MCD) between converted speech
and the ground truth target speech is used as our objective
evaluation to measure the distance of the transferred voice
and the real voice from the target speaker. Besides, we in-
vited 12 humans (seven males and five females) participants
to evaluate the quality of some converted speech generated
from different models. After hearing each speech, the sub-
jects should choose a score from 1-5 points of the naturalness
of the converted speech. The higher the score, the better
the audio quality of the speech, which we called the Mean
Opinion Score (MOS) test. In addition, all participants are
also asked to take Voice Similarity Score (VSS) test. Where
groups of utterances are rated with a score of 1-5 on the voice
similarity, in each group, we calculate the score according to
the timbre similarity given by the tester. The similarity score
of 5 corresponds to the converted speech most similar to the
ground truth speech. In contrast, the similarity score of 1 in-
dicates that the tester does not think that the converted speech
and the ground truth speech come from the same speaker.
The results summarized in Table 1.

As quoted in Table 1, in the traditional VC task, com-
pared with other baseline models, our model has achieved
the best results in both subjective and objective tests, which
shows that our method outperforms the baseline models on
the traditional VC task. The results of the VSS test show that
compared with VQVC+, AutoVC, VAE and StarGAN-VC2,
our method makes the converted speech learn better speech
representation, which improves the conversion effect.

For one-shot VC tasks, since VAE and StarGAN-VC2 can
not achieve voice conversion for unseen speakers, we com-
pare our method with VQVC+ and AutoVC. The results show
that for unseen speakers, the performance of AutoVC will be
greatly degraded when only one utterance is available. In fact,
previous studies have reported this phenomenon [22]. In con-
strast, our proposed model still achieves excellent results even
for unseen speakers and only one utterance is available.
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Table 1. Comparison of different models in traditional VC and one-shot vc

Methods Traditional VC One-Shot VC
MCD MOS VSS MCD MOS VSS

VQVC+ 7.08 ± 0.22 2.86 ± 0.78 3.25 ± 0.59 8.41 ± 0.08 2.72 ± 0.62 3.08 ± 0.75
AutoVC 4.34 ± 0.12 3.54 ± 0.59 3.29 ± 0.72 7.66 ± 0.17 3.12 ± 0.73 3.31 ± 0.46

VAE 5.63 ± 0.21 3.17 ± 0.72 3.13 ± 0.76 — — —
StarGAN-VC2 6.28 ± 0.09 3.4 ± 0.64 3.38 ± 0.51 — — —

Our model 4.30 ± 0.26 3.79 ± 0.68 3.84 ± 0.52 5.02 ± 0.12 3.71 ± 0.57 3.66 ± 0.83

3.2. Dimensions of two parts of latent variable

Here we will discuss how to divide the content embedding Cx

and speaker embedding Sx from the latent space Z. In Au-
toVC, it is crucial to select the size of bottleneck carefully to
make the estimated content embedding contain all content in-
formation but have no timbre information. But in our model,
as we discussed before, no matter how we divide Z in the
channel dimensions, the first part of Z tends to be the ideal
content embedding, and the second part tends to be the ideal
speaker embedding. In this case, we can determine the chan-
nel dimensions of Cx and Sx at will and it will be very conve-
nient for us to get content embedding and speaker embedding
with only one encoder.

(a) Our model (b) M1

(c) M2 (d) M3

Fig. 3. The visualization of speaker embedding. None of
these speakers appeared in training.

Firstly, in order to verify that the decoupling ability of our
model is equivalent under different partition modes, we re-
train our model by changing the dimensions of Cx and Sx.
Specifically, in the original model, the channel dimensions of
Cx and Sx are 32 and 256, respectively. Now we retrain the
model by changing them to 32 and 64, called ’M1’, or, to 64
and 32, called ’M2’. In addition, we trained another ’M3’
with both the dimensions of Cx and Sx in this model are 64.
We select some unseen speakers’ utterances (100 utterances
per speaker) to input these models to obtain the estimated
speaker embedding Sx, then we plotted Sx in 2-D space with
t-SNE in Figure 3. Results shown in Figure 3 indicate that the
content and timbre information will always be well separated

even we change the division proportion of latent space.
Besides, in order to evaluate the performance of the

proposed model under different partition models, by ap-
plying a well-known open-source speech detection toolkit,
Resemblyzer (https://github.com/resemble-ai/
Resemblyzer), we conduct a fake speech detection test.
Specifically, we repeated the test on 20 groups of converted
speeches. In each group, there are four converted speeches
generated from M1, M2, M3 and our model, respectively. For
each converted speech, The toolkit will automatically give a
score between 0 to 1 against the ground truth reference audio.
The higher the score, the more similar the converted speech
to the target voice.The results are shown in Table 2.

Table 2. Comparison of different methods in VC tasks.
Method Detection Score
Our model (C : 32, S : 256) 0.79 ± 0.46
M1 (C : 32, S : 64) 0.78 ± 0.38
M2 (C : 64, S : 32) 0.76 ± 0.51
M3 (C : 64, S : 64) 0.79 ± 0.43

From Table 2, we can find that even we change the divi-
sion proportion of latent space, the performance of our model
in VC tasks will not be damaged. It is worth noting that the
score of M2 is slightly lower than that of other models. We
estimate it may be because when the channel dimensions of
the speaker embedding are too small, it may also affect the
performance of the model in VC tasks.

4. CONCLUSION

In this paper, we proposed a novel VC system learning la-
tent speech representation with flexible hidden feature dimen-
sions. During training, a common speaker classifier is pro-
posed to encourage the estimated speaker embedding to be-
come more and more related to the speaker identity and an
adversarial classifier will focus the estimated content embed-
ding more speaker-independent. We also introduce other ob-
jective functions to make the encoder learn the ideal latent
space. All subjective and objective experimental results show
that the method we proposed is state-of-the-art.
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