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ABSTRACT
Voice Conversion(VC) refers to converting the voice char-
acteristics of audio to another one as it is said by other
people. Recently, more and more studies have focused on
disentangle-based VC, which separates the timbre and lin-
guistic content information from an audio signal to effectively
achieve VC tasks. However, It’s still challenging to extract
phoneme-level features from frame-level hidden representa-
tions. This paper proposed a novel zero-shot voice conversion
framework that utilizes contrastive learning and vector quan-
tization to encourage the frame-level hidden features closer
to the phoneme-level linguistic information, called VQ-CL.
All objective and subjective experiment results show that
VQ-CL has better performance than previous studies in sepa-
rating content and voice characteristics to improve the sound
quality of generated speech.

Index Terms— speech synthesis, contrastive learning,
voice conversion, vector quantization

1. INTRODUCTION

Voice conversion (VC) also called Voice Style Transfer,
which converting an utterance of a source speaker to an-
other utterance of a target person by keeping the content
information of the original speech but replacing it with the
vocal features from the target speaker. Recently, consider-
able effort have spent on the topic of VC [1, 2, 3]. These
methods can be roughly divided into two categories: parallel
VC systems and Non-parallel VC systems [4]. Since it’s
hard for the parallel VC systems to produce natural speech
for a target speaker without enough pair source-target data.
Recently, more and more attention have been focused on the
non-parallel VC systems.

Recently, many studies have reported that non-parallel
VC tasks can be effectively achieved by speech represen-
tation disentanglement [5, 6, 7, 8]. Specifically, for each
speech, which contains both linguistic information, which
we called the content information, and some speaker related
information, which we called style information. Obviously,
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it will be very convenient and flexible for style transfer if
we can separate the content and style information and char-
acterize them well. However, learning disentangled speech
representations is important but still challenging. The causes
of this phenomenon are extremely complex, and we think
one of the most critical reasons is that eliminating all style
information from the source speech is very challenging.

In recent years, various voice conversion solutions are
proposed trying to learn the ideal content features from the
input speech. For instance, INVC [9] utlizied Instance Nor-
malization to eliminate the static global information to learn
disentangled content features. At the same time, VQ-based
models [10, 11] discard the time-invariant information by re-
placing the hidden frame-level features with the closest dis-
crete coding. Besides, Qian et,al proposed AutoVC [12] to
get disentangled content embeddings by applying a properly
tuned information constraining bottleneck.

Unfortunately, all the above models have their questions.
For example, INVC applied a vanilla autoencoder to force the
hidden space to approach the Gaussian distribution, which
makes it unable to guarantee the distribution-matching be-
tween the generated and input data. AutoVC claims they
can achieve distribution-matching VC, but they ignored the
diversity of the phoneme durations. In addition, in order to
disentangle the timbre information, AutoVC introduces very
harsh limitations on the dimension of the hidden represen-
tations, this would compromise the quality of the converted
speech [7, 13]. Relatively speaking, some VQ-based mod-
els like [14, 15, 16] can learn well content embeddings from
input audio signals. However, in order to improve the dis-
entanglement effectiveness, these methods need to introduce
other network structures to combine with VQ, which leads the
model very complex.

Recently, the emergence of the paper [17] has given us
great inspiration. Like [18], by applying the Montreal forced
aligner tool [MFA], we can get the alignment between the
phoneme sequences and speech sequences. To take advantage
of contrastive learning and this tool. We further proposed a
new method to guide the content and style disentanglement
with the variance phoneme duration.

In this paper, we proposed a novel voice conversion
framework that can be used to learn disentangled speechIC
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Fig. 1. Framework of VQ-CL. Zx refer to the frame-level
hidden features, Cx denotes the discrete code which is pro-
duced by codebook. Sx is the style embedding, and it is gen-
grated from the pretrained style encoder.

representation by applying contrastive learning and vector
quantization, named VQ-CL. Specifically, we design a new
training method to encourage those frame-level features that
correspond to the same phoneme as close, and at the same
time, make those frame-level features correspond to different
phonemes as far as possible. Experiment results are carried
out on AISHELL-3 datasets. Our main contributions can be
shown as follows:

• We applied a new training method to guide the content
embeddings to contain more pure linguistic informa-
tion while the style information would be encouraged
to be discarded from the encoder output;

• Vector Quantization is also utilized to further eliminate
the style information so that we can get the ideal con-
tent embedding.

2. METHOD

In this section, we will introduce the core idea of the pro-
posed method. As shown in Figure 1. Our model contains a
feature encoder E and a decoder D. In training, an audio x
was randomly selected as the input, and the feature encoder
will output the hidden frame-level features Zx from x. After
that, the decoder will reconstruct x based on the phoneme-
level features Cx and the style embeddings Sx. Noted that
Sx is ready-made given by a pretrained style encoder training
with GE2Eloss [19], which maximizes the embedding simi-
larity among some utterances which from the same speaker,
and minimizes the similarity among different speakers. Now,
what we need to do is to find a way to construct the map-
ping relationship between the frame-level features Zx and the
phoneme-level features Cx.

2.1. Contrast Similarity

First, given a frame-level audio sequence X = (x1, x2, ..., xT ).
Where T is the length of X . The encoder E can learn a

frame-level hidden representations from X , that is, ZX =
(z1, z2, ..., zT ) = E(X). And, For each frame hidden feature
zt ∈ ZX , since we have known the alignment between the
phoneme and speech by utilizing MFA Tools, we can easily
know whether zt+1 contains the same content information
with zt or not. As shown in the upper left of Figure 1, the
same colors mean that these hidden features correspond to
the same phoneme, and different colors indicate that they
correspond to different phonemes. In other words, we can get
the boundary frame of two adjacent phonemes.

Obviously, if zt is not the boundary frame, zt and zt+1

correspond to the same phoneme, we think they contain the
same content information, then we expect they should be as
closer as possible. At the same time, for those boundary
frames between adjacent phonemes, the hidden features zt
and zt+1 correspond to different phonemes, we expect they
should be as different as possible. In this paper, we use co-
sine similarity score to evaluate the similarity between a pair
of features. It can be formulated as:

G(A(x), A(x1)) =
AT (x)A(x1)

∥A(x)∥2∥A(x1)∥2
(1)

Where G(·, ·) means the cosine similarity score. A(·) can be
any hidden representations extracted from input speech.

As we said above, we train the model to promote a high
cosine similarity between similar hidden representations, and
a low cosine similarity between the boundary hidden features.
Hence, we proposed the similarity contrast loss function to
train the model and it can be computed as:

Lsim =

∑
t=boundary(1 +G(E(xt), E(xt+1)))∑
t̸=boundary(1 +G(E(xt), E(xt+1)))

(2)

Where E(·) means the processing of the feature encoder.
Noted that the value of the cosine similarity score G(·, ·) ∈
(−1, 1), so we add a constant 1 to make the training more
stable. When t = boundary, which indicates that zt and zt+1

contain different content information, otherwise indicates that
zt and zt+1 correspond the same phoneme. During training,
to minimize the contrast loss Lsim, the feature encoder will be
optimized to generate the frame-level hidden features more
related to the linguistic information.

2.2. Vector Quantization

Vector Quantization(VQ) is an effective data compression
technology that can quantify continuous data into the closest
discrete data. Specifically, if we define V as a sequence of
continuous data, that is, V = v1, v2, ...vT . Then V Q(V ) can
be defined as V Q(V ) = q1, q2, ...qT . That is, for each data
vi ∈ V , the cloest discrete data can be computed as:

V Q(vi) = qi; qi = arg min
q∈Codebook

(∥vi − q∥22) (3)
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Recently, many VQ-based models have been proposed
to learn discrete speech representations, and previous studies
have reported that the quantized discrete data from the utter-
ance is closely related to the phoneme information[20, 21].
Inspired by it, we can use VQ to further eliminate the re-
maining global style information so that we can get the ideal
content embeddings. In training phase, the constrain of the
latent-code loss function will minimize the distance between
the discrete code and the continuous embeddings and it can
be expressed as:

Llatent = ∥ZX − CX∥22 (4)

It’s worth mentioning that, unlike those VQ-based models,
since the encoder output ZX are encouraged to be more re-
lated with the linguistic information, we can not get the style
embeddings from the mean difference between ZX and the
discrete content embeddings CX . That’s why we provided a
ready-made style embeddings SX .

Now, with the content embeddings CX and the style em-
beddings SX , the decoder are encouraged to generate the re-
constructed speech x′. We use the reconstruction loss func-
tion to constrain this process and it can be formulated as:

Lrecon = ∥x′
i − xi∥11 x′

i = D(cxi
, sxi

) (5)

Then the full loss function can be expressed as:

L(θe, θd) = Lrecon + αLsim + βLlatent (6)

Where θe and θd are the parameters of the feature encoder and
the decoder, respectively. α , β refers to the weight of Lsim
and Llatent, respectively.

In the inference phase, with the trained VQ-CL, we can
easily get the content embeddings of the source speech and
the style embeddings of the tatget speaker, then the decoder
will generate a well converted speech.

2.3. Architecture of the proposed method

The architecture of VQ-CL is shown in Figure 2. As illus-
trated in Figure 2(a), we designed the feature encoder of VQ-
CL with three convolution layers, two Conv1dResBlocks, and
two ConvBlocks. Among them, Conv1dResBlock refers to
the convolution layers with the residual-connect network, and
the lower right region of Figure 2(a) shows the details of the
ConvBlock. Noted that we introduce dropout to randomly
drop the features of some channels, which can be used to
encourage the feature encoder more focus on the linguistic-
related information and ignore the global style information so
that the frame-level hidden features ZX would be more re-
lated to the phoneme information. In addition, as shown in
Figure 2(b), we introduce the decoder of AutoVC as our de-
coder. In training, the style embedding is first copied to the
same length as the content embeddings and then concatenated
in the channel dimension. The concatenated embedding is
passed into the decoder to generate the reconstructed speech.

(a) Feature encoder (b) Decoder

Fig. 2. Architecture of VQ-CL. Noted that ×2 and ×3 denote
the number of Resblock, Convblock and Conv1d layers in the
feature encoder and the decoder.

3. EXPERIMENTS

3.1. Experiment Configurations

Objective and subjective experiments were conducted on
AISHELL-3, a high-fidelity multi-speaker Mandarin speech
corpus, to assess the performance of the proposed model in
many-to-many VC and Zero-shot VC tasks. The corpus com-
prises 88035 recordings, totaling roughly 85 hours of speech,
from 218 native Chinese Mandarin speakers. The corpus
also includes hand-labeled full pinyin annotations. The en-
tire dataset was randomly divided into three sets: 63262
recordings from 174 speakers for training, and the remaining
recordings from these speakers were used for testing. Ad-
ditionally, the voice of some speakers who did not appear
in the training set was used for conducting zero-shot VC
experiments. In this study, all recordings were resampled
at 22.05kHz, and mel-spectrograms were computed using a
short-time Fourier transform (STFT) with Hann windowing.
The STFT used 1024 for FFT size, 1024 for window size,
and 256 for hop size. Furthermore, the STFT magnitude was
transformed to the mel scale using an 80 channel mel filter
bank spanning 90 Hz to 10.6 kHz.

The VQ-CL model was trained on one NVIDIA V100
GPU for 300k steps, using a batch size of sixteen. A code-
book size of 256 was chosen, and the speaker embedding was
generated by averaging the embeddings from 10 two-second
utterances of the same speaker to the pretrained speaker en-
coder. The weights in Eq.(6) were set to α = 0.01, β = 0.1.
We used F0-AutoVC, TGAVC, and VQVC+ models as the
baseline models, with training following the description in
[22, 7, 11], to ensure a fair comparison. Moreover, we used
a pretrained Hifi-gan [23] vocoder to convert all the output
mel-spectrograms back to the waveform.

To measure the quality of converted speech in our study,
we used the Mel-Cepstral Distortion (MCD) metric as an ob-
jective evaluation. We also conducted subjective evaluations
using MOS and VSS tests with 13 human participants, com-
prising nine males and four females. For the MOS test, par-
ticipants rated the naturalness of each converted speech on a
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Table 1. Comparison of different models in traditional VC and zero-shot vc

Methods Many-to-Many VC zero-shot VC
MCD MOS VSS MCD MOS VSS

F0-AutoVC 6.86 ± 0.42 3.50 ± 1.11 3.08 ± 1.29 7.41 ± 0.53 3.35 ± 1.20 3.01 ± 1.33
TGAVC 7.08 ± 0.31 3.66 ± 1.27 3.14 ± 1.08 7.65 ± 0.31 3.54 ± 1.23 3.06 ± 0.97
VQVC+ 8.94 ± 0.25 3.23 ± 1.42 3.05 ± 0.84 9.21 ± 0.46 3.02 ± 1.21 3.26 ± 1.17

VQ-CL 6.23 ± 0.37 3.88 ± 1.10 3.31 ± 0.97 6.38 ± 0.48 3.59 ± 136 3.26 ± 1.36

scale of 1-5, with higher scores indicating better quality. In
the VSS test, participants rated groups of utterances with a
score of 1-5 based on the perceived voice similarity between
the converted speech and the ground truth speech. We cal-
culated the score based on the timbre similarity perceived by
the participants. A similarity score of 5 indicates that the con-
verted speech is most similar to the ground truth speech, while
a score of 1 indicates that the participant does not believe the
two speeches come from the same speaker. The results of the
evaluations are presented in Table 1.

The results indicate that our VQ-CL model outperforms
other baseline models in both subjective and objective tests
in traditional many-to-many VC tasks. This suggests that
the speech generated by our model is superior to that of the
baseline models. Furthermore, the VSS test reveals that our
method improves the conversion effect by enabling better
learning of timbre and prosodic features compared to F0-
AutoVC, TGAVC, and VQVC+. The results of natural evalu-
ation demonstrate that our proposed method is still superior to
the baselines, even for unseen speakers. Additionally, many
people find that the speech synthesized using our method is
more similar to the ground truth than the baseline synthesized
speech, highlighting the competence of VQ-CL in zero-shot
conversion, as shown in the right part of Table 1.

3.2. Ablation studies

In this section, we first evaluate the effectiveness of the sim-
ilarity contrast loss Lsim and VQ technology, respectively.
Specifically, we retrain the proposed model without Lsim,
called ’M1’, or without VQ, called ’M2’. To evaluate the
quality of different converted speech more accurately, in
addition to the above MCD test, we add another objective ex-
periment. To compare the similarity of 8 unknown speeches
(5 real ones and 3 fakes generated from M1, M2, and VQ-
CL), we conducted a fake speech detection test using the Re-
semblyzer open-source speech detection toolkit (https://
github.com/resemble-ai/Resemblyzer) against
ground truth reference audio. For each converted speech, The
toolkit will automatically give a Detection score between 0
to 1 against the ground truth reference audio. The higher
the score, the more similar the converted speech and the tar-
get voice. We repeated the test on 20 groups of converted
speeches and the results are shown in Table 2. In conclu-
sion, with the similarity contrast loss and VQ technology, the
performance of the model will be greatly improved.

Besides, we also focused on the choice of codebook sizes,
that is, how many discrete vectors the codebook contains are
the best. For this, we reuse Resemblyzer to conduct many

Table 2. Results of the ablation experiments.
Score VQ-CL M1 M2
MCD 6.23 ± 0.37 7.07 ± 0.41 6.49 ± 0.19
Detection 0.77 ± 0.16 0.66 ± 0.31 0.72 ± 0.09

comparison experiments to find the proper number of code-
book sizes. The results are summarized in Table 3, and you
can find one of the Comparison results in Figure 3. From the
result, 256 is selected as an appropriate number for the code-
book sizes.

Table 3. Comparison of different codebook sizes .
Codebook Size 64 128 256 512
Detection Mean Score 0.663 0.731 0.760 0.738

Fig. 3. Detection Score under different codebook sizes.

4. CONCLUSION

In this paper, we proposed the similarity contrast loss to im-
prove the disentanglement between the content and style in-
formation. At the same time, VQ is also applied to further
eliminate the residual style information to improve the per-
formance of VQ-CL in VC tasks. All objective and subjec-
tive experiments show that VQ-CL overperformed previous
works in VC tasks.
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