
Gecko: Resource-Efficient and Accurate Queries in
Real-Time Video Streams at the Edge

Liang Wang1, Xiaoyang Qu2, Jianzong Wang2§, Guokuan Li1§, Jiguang Wan1, Nan Zhang2, Song Guo3, Jing Xiao2
1Huazhong University of Science and Technology, Wuhan, China

2Ping An Technology (Shenzhen) Co., Ltd., Shenzhen, China
3Hong Kong University of Science and Technology, Hong Kong

1{iggiewang, liguokuan, jgwan}@hust.edu.cn
2quxiaoy@gmail.com, jzwang@188.com, nzhang889@gmail.com, xiaojing661@pingan.com.cn

3songguo@cse.ust.hk

Abstract—Surveillance cameras are ubiquitous nowadays and
users’ increasing needs for accessing real-world information
(e.g., finding abandoned luggage) have urged object queries in
real-time videos. While recent real-time video query processing
systems exhibit excellent performance, they lack utility in deploy-
ment in practice as they overlook some crucial aspects, includ-
ing multi-camera exploration, resource contention, and content
awareness. Motivated by these issues, we propose a framework
Gecko, to provide resource-efficient and accurate real-time object
queries of massive videos on edge devices. Gecko (i) obtains
optimal models from the model zoo and assigns them to edge
devices for executing current queries, (ii) optimizes resource
usage of the edge cluster at runtime by dynamically adjusting the
frame query interval of each video stream and forking/joining
running models on edge devices, and (iii) improves accuracy
in changing video scenes by fine-grained stream transfer and
continuous learning of models. Our evaluation with real-world
video streams and queries shows that Gecko achieves up to
2x more resource efficiency gains and increases overall query
accuracy by at least 12% compared with prior work, further
delivering excellent scalability for practical deployment.

I. INTRODUCTION

Recent years have witnessed substantial growth in the
deployment of surveillance cameras. According to research
[1], the worldwide market for video surveillance is expected
to grow from $53.7 billion in 2023 to $83.3 billion by 2028. To
fully unleash these deployed cameras’ potential, video analyt-
ics [2]–[5] based on Deep Neural Networks (DNNs) has been
developed to assist various public and commercial institutions
in acquiring useful information from video streams.

Querying objects is one of the important video analytics
jobs, which is adopted across a broad spectrum of applications,
such as public safety and traffic management [6]. Specifically,
the goal of video query is to respond to users’ queries for
diverse needs that involve video streams from a group of
cameras. As shown in Figure 1(a), a query task may need
to query in numerous video streams and provide the set of
cameras and video frames containing query objects.

Within these applications, it is generally ideal to exe-
cute query tasks directly at the edge. By deploying com-
putation near the video data sources, edge computing for

§Corresponding authors.

video analytics [7]–[9] can successfully meet real-time per-
formance while reducing the high overhead of transmitting
video streams. However, most edge devices only support
specialized lightweight models due to their limited resources
(e.g., with weak GPUs [10]). Compared to standard DNN
models, these lightweight DNN models have reduced weights
and less complex architectures. They can only memorize a
limited number of object appearances and only perform well
in a few scenarios.

Recently, several edge-based solutions in the network com-
munity (e.g., SurveilEdge [11]) and the database community
(e.g., Video-zilla [12]) have initially shown the effectiveness
of processing object queries over real-time video data via
edge-cloud collaboration. However, these solutions have not
solved several performance challenges for achieving resource
efficiency and high accuracy in practice:
• A1: Multi-camera exploration and model sharing. Previous
real-time video query approaches [3], [11], [13] only focus on
optimizations of querying within a single video stream. In fact,
many practical real-time video query applications go beyond
individual cameras [14]. On the one hand, when receiving
a query that involves a large number of cameras, the query
may want to apply the same model to different video streams.
On the other hand, further queries may also use the same
model while querying the same object. The framework should
eliminate redundancies by sharing models among multiple
camera streams at the start of query processing, for resource
efficiency and scalability to large-scale cameras.
• A2: Runtime resource contention. Real-time video queries
need to guarantee high accuracy and low latency under com-
putational resource contention [15] of edge devices. To strive
for optimal resource efficiency, it is imperative to adaptively
allocate or schedule available resources at runtime based on the
contention effects from query processing and model execution.
• A3: Video content awareness. The query should adapt
to the content of the video streams. The rationale behind
content adaptation is threefold. Firstly, lightweight models
often exhibit fluctuating levels of accuracy across various
video contents (e.g., due to different distributions of the
objects). Thus, the system should identify and employ the
most accurate model from among those functionally equivalent

Stream Transfer
(Ⅲ-D)

𝐃𝐞𝐯𝐢𝐜𝐞𝑵

Cloud Storage

…

…

Lightweight modelsHard examples

Accuracy predictor

Serverless computing

. . .

Model

Selection
(Ⅲ-B)

Model

Retraining
(Ⅲ-D)

Golden model

Scheduler (Ⅲ-B)

Edge Devices

…
Query2

Query1

Query3

Feature Extractor (Ⅲ-B)

Hard

Examples

Edge

Cam 1 Cam 2 Cam 3 Cam 4

Gecko

Query

Content

Features Fork/Join
(Ⅲ-C)

. . .

Selected

model

Hard Example

Miner (Ⅲ-D)

Frame Skipping

Controller (Ⅲ-C)

search for

luggage in

all cameras

“luggage

found in

camera 4”

Query

Results

(a) Real-time video query (b) Architecture overview of Gecko

Video Stream

Results

Fig. 1. Overview of Gecko. (a) illustrates an example of real-time video queries with Gecko. The user input includes query objects (luggage in this example)
and query areas (cameras), and the output results are video frames with detected query objects. (b) shows Gecko’s components and their interactions.

for the current scene [13]. Secondly, considering available
computational resources, the video frame query interval needs
to be configured based on the changing video content. Thirdly,
since real-world video data changes over time, specialized
edge models are especially susceptible to data drift [8]. For
example, a lightweight model untrained on images containing
night will perform poorly when it encounters such conditions
in practice [16]. Adapting to these dynamic factors can im-
prove overall accuracy.

To address these challenges, we propose Gecko, a resource-
efficient framework for executing highly accurate real-time
video queries on edge devices. It leverages serverless com-
puting for model selection and model retraining, while con-
sidering resource utilization of the edge cluster. First, for each
online video query, Gecko promptly selects suitable models
from the shared model zoo, schedules them to edge devices,
and attaches camera streams to the corresponding model to
query. Second, during query execution, Gecko reallocates com-
putational resources to meet the latency and accuracy objective
when subjected to resource contention. Finally, Gecko can
both carefully transfer a stream to another optimal model for
inference and continually train models running on devices to
improve accuracy under data drift.

We implement Gecko on NVIDIA Jetson modules and
evaluate its performance using real-world surveillance videos.
Compared with SurveilEdge [11] and RECL [13], two real-
time video query solutions at the edge, Gecko achieves up
to 2x more resource efficiency gains and increases query
accuracy by at least 12%. Moreover, Gecko exhibits excellent
scalability for deployment in practice.

Overall, we make the following contributions in this paper:
• We design Gecko, a framework for resource-efficient and

accurate real-time video queries at the edge (§III).
• Gecko extracts content-aware features, uses an accuracy

predictor for model selection based on the extracted fea-
tures, and schedules selected models and camera streams
to enable multiple-stream model sharing (§III-B).

• Gecko allows runtime resource reallocation under re-
source contention, which results from varying video con-
tent and time-varying online queries (§III-C).

• Gecko further improves query accuracy by performing
fine-grained stream transfer and continuous learning of
edge models on video content (§III-D).

• We implement and evaluate Gecko to demonstrate the
efficiency and accuracy of our design (§IV).

II. RELATED WORK

Video Query Processing Frameworks. Recent works on
video query processing can be generally summarized into three
broad optimizations. The first uses specialized lightweight
models to answer queries directly [17]. The second focuses
on filtering out unimportant frames and processing the fil-
tered critical frames [18]. Several systems combine the two
approaches [19], [20]. And the third makes the optimal con-
figuration choice considering the resource-quality tradeoff [3],
[21]. Gecko falls into the first and second categories—using
lightweight, small, fast, yet accurate models for specific video
scenes and adjusting the real-time processing frame rate for
every stream. Different from most of these works, Gecko
applies an edge computing paradigm. The closest frame-
work to Gecko is SurveilEdge [11], which implements the
object queries in real-time video streams on edge devices.
Particularly, when receiving a new query request, Gecko can
respond faster by selecting one or more models which may
have identified a similar scene and object distribution from
historical models in cloud storage, instead of training specific
DNNs in SurveilEdge.

Adaptive Vision Systems. Vision algorithms suffer from
accuracy and latency issues when running on edge devices,
especially under changing video scenes and varying resource
contention. ROMA [22] analyzes the impact of dynamically
changing video contents on real-time accuracy and latency
variation. As videos contain similar content within a series
of consecutive frames, current video analytics algorithms or

applications have utilized the content information to improve
accuracy and reduce latency. AdaScale [23] improves speed
and accuracy for video object detection by selecting the
input image scale based on content. ODIN [16] can detect
data drift and recover from it based on the similarity of
video scenes. ApproxDet [15] uses lightweight features of
past video content to choose the optimal execution branch.
LiteReconfig [24] uses both lightweight and heavy features
for selecting the configuration tailored to the video content. In
contrast, Gecko applies a content-aware accuracy predictor to
precisely deduce which models in cloud storage are accurate
for given video streams. Gecko also adaptively adjusts the
frame processing interval to the content of each video stream.
On the other hand, managing resources for video analytics
applications is an active area of work. VideoStorm [3] designs
resource configuration adaptation to maximize performance.
VideoEdge [21] considers the positioning of video analytics
components throughout a hierarchy of clusters under different
resource restraints. Mainstream [25] adapts concurrent ap-
plications sharing fixed edge resources to reduce aggregate
per-frame computation time and optimize aggregate result
quality. MIRSA [26] provides multi-device interaction to share
both edge and cloud computing resources. Inspired by these
works, Gecko supports model scheduling and model sharing
for online queries to improve GPU utilization on edge devices.

Continuous Learning in Video Analytics. Video analyt-
ics systems are increasingly embracing continuous learning
through model distillation [8], [13], [27] to retrain lightweight
models to adapt to changing video scenes and enhance in-
ference accuracy. Ekya [8] offers resource-sharing strategies
for cost-effective model retraining. AMS [27] dynamically
adjusts the frame sampling rate at edge devices based on scene
variations to minimize the need for frequent retraining. RECL
[13] integrates Ekya and AMS, and responds faster than them
by selecting a model from the model zoo when requesting a
model. Gecko further considers scalability and retrains models
using serverless computing and hard examples [28] in videos.

Serverless Service. Serverless computing as an emerging
cloud-computing paradigm has experienced massive growth
and benefits many tasks, including video processing [29]. Re-
cent efforts have integrated serverless computing into the edge-
based systems for video analytics [30], [31], which are part of
the main motivation of Gecko to utilize serverless computing
for on-demand model selection and online continuous learning.

III. GECKO DESIGN

To provide accurate real-time video queries in practice, we
design Gecko, an accuracy-augmented resource-efficient video
query framework. Below, we introduce its architecture and
delve into the details of each technique.

A. Overview

Goals. For practical deployment, Gecko is designed with
two primary goals: (a) resource-efficient. Gecko considers
resource contention among massive video streams to improve
resource utilization of edge devices (solving A1 and A2). (b)

TABLE I
LIST OF CONTENT FEATURES EXTRACTED BY GECKO. THE EXTRACTION

COST IS EVALUATED ON THE NVIDIA JETSON TX2 BOARD.

Name Dimension Cost Definition

Light 5 0.42 ms

Composed of width, height, number
of objects, average size of objects
divided by the frame size, fraction
of pixels covered by all objects

HoC 768 17.23 ms Histogram of Color on red, green,
blue channels

HOG 5400 30.15 ms Histogram of Oriented Gradients

MobileNet 1280 179.89 ms
Effective and efficient feature extrac-
tor, average pooled from the feature
map before the fully-connected layer

accurate. Gecko can achieve high accuracy of object queries
in various and changing video scenes (solving A1 and A3).

Architecture & Workflow. Figure 1(b) shows the architec-
ture of Gecko. To illustrate the query workflow, we assume that
multiple cameras are connected to the system and continuously
stream their captured videos to the edge. Notably, edge devices
will not process these video streams unless responding to
a query. When the user submits a query request to Gecko,
Gecko first performs model selection and scheduling (§III-B).
The feature extractor extracts current content features from
the video streams over which the query is to be performed.
The system invokes the serverless function of model selection
that takes these features as parameters to determine the most
accurate model for each video. The scheduler decides which
devices to use for query execution, assigns the selected models
to the devices, and attaches the video streams as inputs to
the corresponding optimal models. At runtime, Gecko em-
ploys two strategies to optimize the reallocation of resources
(§III-C). The frame skipping controller dynamically adjusts
the query frame interval of each video stream. Meanwhile,
computing resources of edge devices can be adaptively re-
allocated by the fork/join operations of model execution. To
cope with data drift and improve accuracy, Gecko incorporates
two additional approaches (§III-D). One practical approach is
to perform stream transfer at a fine-grained level. When a
video stream’s scene undergoes obvious changes, transferring
it to another model which performs inference best for current
content can avoid query performance degradation. Secondly,
continuous learning is utilized to adapt models to dynamic
scenes. The hard example miner automatically mines hard
examples from videos, which refer to video frames where
the query object has significant visual changes within the
same class, making it challenging for the model to detect the
object correctly. When the number of these frames reaches a
threshold, serverless model retraining is triggered to maintain
the desired accuracy.

B. Model Selection and Scheduling

On receiving a query, Gecko should quickly select one or
more high-accuracy lightweight models from a collection of

history models and schedule them to devices for execution.
Gecko achieves it by: (i) extracting the content features from
current video frames; (ii) using a reliable and fast selection
procedure to navigate the model zoo in cloud storage; (iii)
assigning models to devices based on resource usage statistics.

Extracting Content Features. Gecko contains a feature
extractor, which is designed to map from the frame representa-
tion to its content-aware feature representation f, as the former
has excessive redundancy. The extractor possesses discrimina-
tive qualities, allowing the features to predict the accuracy of
each model relative to video content characteristics. Table I
summarizes Gecko’s content features, dimensions, extraction
time (cost), and definitions. These features are inspired by
the recent work in object detection [24]. Gecko can extract
some lightweight features at no cost, such as the video frame’s
width, height, number of objects, and average object size. To
characterize color and gradient information, Gecko utilizes
two conventional vision features: Histograms of Color (HoC)
and Histograms of Oriented Gradients (HOG). In addition, the
feature extractor incorporates MobileNetV2 [32], a commonly
used DNN that is computationally efficient for heavy content
feature extraction. Although feature extraction incurs latency
costs, such costs can be acceptable.

Model Selection. We propose the accuracy predictor for
model selection based on given extracted content features.
The predictor is a gating network (similar to the method in
RECL [13]) to infer which models accurately fit current video
content. It is designed as a serverless function A(m, f) called to
estimate the accuracy of model m, relying on the input features
f. A(m, f) is achieved using a 6-layer neural network (striking
an optimal tradeoff among latency, selection accuracy, and
update cost) with ReLU activation, 256 neurons incorporated
in all hidden layers, and residual connections [33]. Due to
the significant variation in feature dimensions, spanning 1 to
3 orders of magnitude, the first layer utilizes fully-connected
projections to project both low- and high-dimensional content
features into fixed 256-dimensional vectors, which are then
concatenated. The output layer has M neurons, where M is the
number of models. The network finally assigns an accuracy
score to each model. As the model zoo size increases, the
output size of the gating network must be correspondingly
updated. Since the logic for accuracy prediction remains con-
stant in the zoo, we simply add neurons for the new models to
the final layer and train the accuracy predictor without altering
the connectivity weights for the existing expert models.

Model Scheduling. Then, the model selection results are
sent back to the scheduler component. Each selected model is
associated with one or more video streams in which it achieves
optimal accuracy. Gecko needs to schedule the execution of
these models to the edge devices. Each model has binding
metadata, including GPU compute consumption for model
running and processing each additional video stream. The
metadata can either be user-provided or obtained from the
previous execution. As resources can be reallocated at runtime
(§III-C) and the framework cannot perceive the duration of
query execution, we can focus on space-scale scheduling

Reduce the

interval by half

Querying

objects

Start

Computing
ത𝜙𝑘

Below 𝜙𝑡

Equal to

𝑆

Increase the

interval by 1

N

N

Y

Y
Time

𝑆

F
ra

m
e

S
k

ip
p

in
g
 I

n
te

rv
al

𝑡1 𝑡2 𝑡3 𝑡4

𝑆

2

0

Fig. 2. Illustration of Dynamic Frame Skipping Control. Left: Control
flow diagram. Right: AIMD-based frame skipping interval change (marked
timestamps correspond to the video scenes exhibiting dramatic changes).

without considering time-scale optimization. The scheduler
of Gecko is fairly simple. Models are sorted based on their
GPU demands from least to greatest, and then each model
gets assigned to the currently most idle device in order. The
head-of-line (HOL) blocking [34] issue that is commonly en-
countered in small-scale clusters can be effectively addressed
by prioritizing jobs that demand fewer resources.

C. Runtime Resource Reallocation

Different from previous real-time video query solutions
[11], [13] that optimize the performance within a single video
stream, Gecko considers resource contention among massive
video streams to improve GPU utilization. To this end, Gecko
designs two strategies of resource reallocation at runtime to
adapt to variable query frequency across streams and different
inference demands across models, respectively.

Dynamic Frame Skipping Control. The frame query in-
terval in different video streams should adapt video content.
The short frame processing interval enhances the likelihood
of detecting query objects in more frames, providing more
opportunities for accurate queries. However, it is sufficient
to query at 2∼3 FPS when querying objects moving slowly.
When there is resource contention from multiple tasks on
the resource-constrained edge device, selecting an appropriate
frame processing rate that suits each video scene for video
query is better. Hence, we propose the dynamic frame skipping
control, adjusting the frame interval adaptively based on the
extent and speed of video scene changes.

First, we adopt the following approach to obtain a robust
signal [27] for scene change. Compared to raw pixels, labels
typically take values in a considerably smaller space (i.e.,
query object classes), making them a more reliable signal for
detecting change. The edge device calculates a metric ϕ for
each stream during querying to monitor the rate at which labels
change over time for video frames. Consider a series of frames
{Ik}nk=0, with {T (Ik)}nk=0 denoting the model’s output labels
on these frames. For each frame Ik, define ϕk using the same
loss function (e.g., CIoU [35]) that defines the object query
task, with T (Ik) and T (Ik−1) serving as the prediction and
ground-truth labels, respectively. In other words, ϕk is the loss
(error) of the model’s prediction on Ik relative to the label
T (Ik−1). Therefore, the smaller ϕk is, the more similar the

labels for Ik and Ik−1 are, i.e., slowly-changing or stationary
scenes tend to obtain lower scores.

Second, when dynamically adjusting the frame skipping in-
terval, we take the approach inspired by the Additive Increase/-
Multiplicative Decrease (AIMD) algorithm [36], best known
for its use in Internet congestion control. For slowly-changing
or stationary scenes, or scenes without any query objects,
the frame skipping controller gradually increases the frame
skipping interval, while quickly reducing the interval when the
query object is detected and the scene changes dramatically.
Our insight pertains to the spatiotemporal characteristics of
videos in practical applications, i.e., cameras observing similar
scenes tend to capture videos containing similar objects and
demonstrate the periodicity of busy times [11]. Figure 2 shows
the workflow of adjusting the frame skipping interval. In detail,
we set a threshold ϕt, and the controller computes the average
ϕk over recent frames and periodically checks whether ϕ̄k is
below the threshold. If it is, the frame interval is increased by
1; otherwise, the interval is reduced by half. In addition, we
use the variable S to constrain the maximum interval not to
exceed this value.

FORK/JOIN of Model Execution. To maintain optimal
resource efficiency, Gecko continually monitors resource avail-
ability. When a change in resource contention status is de-
tected, such as insufficient GPU memory, Gecko needs to redo
scheduling decisions. This involves adjusting model execution
among edge devices to ensure efficient resource allocation,
which is implemented with two primitives: FORK and JOIN.

The FORK mechanism allows model execution creates a
copy on another device. Here we assume that the network
latency associated with the transmission of frames to the edge
device is negligible. If the device’s query processing service
rate (Ts) is faster than the total cache frame arrival rate (Ta)
coming from all connected cameras, each frame can be pro-
cessed without delay. However, several subsequent frames can
not be processed in time while serving one frame if the frame
input rate is high. On the other hand, the maximum supported
video stream capacity is limited and varies among different
devices, which can be counted by performance profiling. Thus,
model execution may be required to fork for more computing
resources to process current video streams. Specifically, FORK
is triggered to ensure: (i) service rate Ts on a single device
is greater than Ta, and (ii) at runtime, the device keeps video
streams below the maximum supported number so that query
application performance remains stable. In contrast, if the
number of streams drops (e.g., a query completes) or the frame
input rate is consistently low (e.g., videos are stationary or
slowly-changing scenes), keeping running multiple of the same
models on different devices can lead to computing redundancy.
The JOIN primitive can merge queries into as few devices as
possible for processing, releasing redundant models to provide
more available computing resources.

Transferring video streams is a critical aspect that Gecko
must address to ensure the correct process of the two prim-
itives. If frames arriving during a transfer aren’t processed,
it can impact the accuracy of the queries. Our method is

Algorithm 1: Hard Example Mining
Input : L - Prediction bbox list.

θL, θM , θH - Low, middle, high bbox thresholds.
λ - Image threshold.

1 Function GeckoMine(L, θL, θM , θH , λ)
2 m← 0, n← Length(L)
3 for all bbox ∈ L do
4 if θL ≤ bbox.score < θM then
5 return true
6 else if θM ≤ bbox.score < θH then
7 m← m+ 1
8 // calculate hard example coefficient.
9 factor ← m

n
10 if factor ≥ (1− λ) then
11 return true
12 return false

that while the destination device prepares for the transferred
stream, the frame is still input normally into the source device.
When the destination device becomes responsible for analyz-
ing the frames after the stream attaches, it sends a transfer
finish ACK to the source device. The source detaches the
stream after receiving the transfer finish ACK to accomplish
the requirement of the transferred stream.

D. Query Accuracy Improvement
To enable continuous improvement in accuracy even with

data drift during the query process, Gecko employs Fine-
grained Stream Transfer to maintain the accuracy for each
single stream and Continuous Learning to improve the overall
accuracy of the single model.

Fine-grained Stream Transfer. Beyond transferring video
streams mentioned in Section III-C, Gecko also performs a
fine-grained level of stream transfer. Our insight is that real-
time video query suffers from a significant limitation in their
ability to accurately process massive streams, which assumes
that all frames in a video come from a static distribution [16].
In practical scenarios, visual data exhibits temporal drifts as
it stems from a time-evolving and dynamic distribution. We
propose a distance metric using the content features to detect
shifts tailored for visual data in Gecko. Once the shift is
detected in a video stream, Gecko performs model selection
again to determine if the stream could be transferred as input
to another model that is best for the current video content
for higher accuracy. Specifically, we employ the Hellinger
distance to calculate and quantify the similarity between two
frames. Gecko periodically (e.g., every 30 seconds) extracts
the content features from the current video frame at query
runtime (as shown in Table I, costs are negligible). We define
the Hellinger distance between the initial frame X for model
selection and the current frame Y as

dH(X,Y) =
1

|F |
∑
f∈F

√√√√√√ kf∑
i=1

√√√√ Xfi∑kf

j=1 Xfj

−

√√√√ Yfi∑kf

j=1 Yfj

2

(1)

where F denotes the set of all features and kf is the number
of dimensions in f . By taking the average over all features,

we can calculate the distance between two frames. If the
distance between the video stream’s initial and current frame is
considerable, the existing model may no longer be suitable for
the current distribution. Notably, for robustness reasons, only
multiple consecutive large deviations in distance will trigger
the migration decision.

Continuous Learning. Another effective strategy to cope
with data drift is continuous learning of lightweight models.
The single model can be retrained to improve the overall
query accuracy across all connecting video streams. The model
performance continuously boosts by learning knowledge from
new scenarios. Gecko employs serverless computing to exe-
cute a set of operations for continuous learning. Serverless
offers ample computational power of the cloud, with the
benefit of high scalability (i.e., enabling continuous learning
of as many models as needed) due to its elasticity feature.

Collecting the appropriate frames for retraining is a crucial
part of continuous learning. The hard example miner automat-
ically selects hard examples for model retraining. Algorithm
1 shows the hard example mining procedure. We define three
thresholds, θL, θM , and θH , representing the low, medium,
and high detection bounding box thresholds of inference
confidence score, respectively. They divide the confidence
score of inference boxes into two intervals. For the [θL, θM)
range, as long as an output box confidence score is within the
range, the frame is a hard example. For the [θM , θH) range, it
requires calculating the image hard example coefficient, which
is equal to the number of inference boxes within this range
divided by the total number of inference boxes in the frame.
We establish a factor threshold, denoted as λ, whereby frames
with a coefficient higher than (1-λ) are considered as hard
examples. Through extensive experimentation, we discover
that optimal settings for θL, θM , and θH are 0.3, 0.5, and 0.7.
In addition, our findings suggest that setting the λ parameter to
0.8 is best, and any value within the range of 0.6 to 0.9 proves
effective. These parameters make the best tradeoff between
capturing enough challenging cases for effective retraining
and avoiding too many easy or irrelevant examples that could
potentially dilute learning. However, these values might need
to be adjusted based on specific application requirements.

When the number of uploaded hard examples corresponding
to each model exceeds a given threshold, continuous learning
will be triggered. First, since manual labeling is tedious and
potentially a colossal waste of time for continuous training
of edge models, we get the labels using a highly accurate
“golden model” that employs a deep architecture with a large
number of weights is used to label the hard example frames
automatically. The golden model is pre-trained on extensive
datasets and can cover all unseen domains. Notably, the golden
model can run effectively with abundant computing resources
offered by serverless in the cloud. Then, the retraining function
starts, utilizing the frames with labels as the training dataset
to optimize the lightweight model, boosting the accuracy of
real-time video queries for the current scene. This retrained
model is considered promising if its accuracy is higher than
the previous model with the evaluation dataset. Finally, the

promising model is transmitted back to the edge device for
redeployment. Meanwhile, it is added to the model collection,
and the accuracy predictor is updated. Furthermore, to handle
catastrophic forgetting [8], [27], a random subset of hard
examples used for the current session is replaced by a small-
scale historical data set before each retraining session.

IV. EVALUATION

In this section, we evaluate Gecko on a physical edge cluster
and perform numerous queries with three different video query
workloads.

A. Experimental Setup

Implementation: Gecko’s core modules are written in 2.6k
lines of Python code. We implement Gecko in Python3
(v3.7.3) using PyTorch (v1.9.0) for the feature extractor, the
frame skipping controller, and the hard example miner. We
also use cv2 and scikit-image to extract content-aware
features. Moreover, the implementation of Gecko utilizes the
DeepStream SDK [37], which enables attaching and detaching
query video streams to inference pipelines with lightweight
models at runtime. The non-edge-side implementation is based
on Alibaba Cloud Function Compute as the serverless com-
puting platform for model selection and model retraining. We
follow the same retraining algorithm as in Ekya [8] though
our framework is generally applicable. We leverage Alibaba
Cloud Object Storage Service as the cloud storage for object-
like data (e.g., models and video frames). For experiment
workloads, we construct three different workloads—workloads
1/2/3 respectively represent the scenarios of querying one class
of object on each/multiple/all camera(s). During querying, the
results are saved at edge devices.
Testbed: We conduct experiments on a cluster of 3 embedded
platforms: an NVIDIA Jetson TX2, an NVIDIA Jetson AGX
Xavier, and a more powerful NVIDIA Jetson AGX Orin.
Dataset & Models: We evaluate Gecko using 62 surveillance
videos as camera streams collected from YouTube using the
keyword “live camera HD”. To ensure that our video sessions
encompass meaningful data drifts, we select videos lasting
from a few minutes up to an hour with a cumulative length
of 25 hours. Our dataset contains diverse cities and scenes,
including varying weather conditions and times of day. No-
tably, in every experiment, we refrain from playing the same
video segment on any edge devices twice to prevent artificially
amplifying the gain from model reuse. Surveillance video is
a particularly challenging situation for testing our framework
due to the frequent changes in scenes and objects. For the
lightweight and golden models, we employ YOLOX-Nano and
YOLOX-X [38], respectively. Our models are pre-trained on
the COCO [39] dataset.
Metrics: We employ the average GPU usage, accuracy, and
response time as metrics to evaluate the performance of
different schemes for real-time object queries in videos. To
obtain the average GPU usage, we run nvidia-smi at each
edge device at regular intervals throughout the execution of our
workloads. For accuracy assessment, we compare the results

T X 2 X a v i e r O r i n
0

2 0
4 0
6 0
8 0

1 0 0
GP

U U
sag

e (
%)

W o r k l o a d 1
T X 2 X a v i e r O r i n

0
2 0
4 0
6 0
8 0

1 0 0

W o r k l o a d 2

 O n e - t o - o n e R E C L S u r v e i l E d g e S c a l a b l e S u r v e i l E d g e G e c k o

T X 2 X a v i e r O r i n
0

2 0
4 0
6 0
8 0

1 0 0

W o r k l o a d 3
Fig. 3. End-to-End Evaluation: Average GPU usage comparison of different methods across three workloads.

on the edge device with the results for the same frames using
the golden model (similar to prior work [11], [13]). Notably,
we use the F-1 score, which accounts for both precision p and
recall r of the queries, to measure the accuracy of the queries.
Baselines: We compare Gecko against the following schemes:
• One-to-one. We run one Docker [40] container at the edge

device to query one class of object in a camera.
• RECL. RECL [13] is a novel video analytics system with

model selection and model adaptation. We only use it to
query objects in our test though it applies to multiple tasks. It
has an online procedure for model selection from the model
zoo and employs a server to adapt lightweight expert models
running on edge devices continually. Comparing Gecko with
this scheme will demonstrate the advantage of having a
scalable system with model sharing.

• SurveilEdge. SurveilEdge [11] is a collaborative cloud-edge
system designed for real-time querying of surveillance video
streams using specific models. The ensuing experimental
results will demonstrate comprehensive enhancements of
Gecko compared to SurveilEdge.

• Scalable SurveilEdge. We additionally implement a scal-
able version of SurveilEdge that can query the same class
of objects across multiple cameras using a single model.

B. Results

End-to-end Performance. Initially, we evaluate the end-to-
end performance of Gecko in comparison to baselines over 12
cameras, which replay videos from our dataset. Upon the end
of one video, we go on with another distinct video from the
dataset, ensuring no repetition as it positively influences the
accuracy gain attributed to model selection. For methods that
require the cloud server, we employ an NVIDIA V100 GPU
cloud server. And for methods without scheduling algorithms,
we fix the allocation of two cameras to the TX2, five cameras
to the Xavier, and five cameras to the Orin. In this case, we
simplify workload 2 to query a specific class of object across
all cameras attached to the single device. Figure 3 summarizes
the GPU usage of each device across the three workloads. We
also report the overall accuracy and average response time for
each workload in Table II. Note that ensuring timeliness under
resource contention may require skipped processing of many

TABLE II
END-TO-END EVALUATION: ACCURACY AND RESPONSE TIME FOR

DIFFERENT METHODS ACROSS THREE WORKLOADS.

Scheme Query
Workload

Overall
Accuracy

Average
Response Time

One-to-one
Workload 1
Workload 2
Workload 3

65.9%
68.5%
63.4%

10.6s
3.3s
3.4s

RECL
Workload 1
Workload 2
Workload 3

76.4%
75.9%
75.3%

11.8s
6.8s
6.9s

SurveilEdge
Workload 1
Workload 2
Workload 3

81.1%
78.8%
79.4%

63.3s
16.9s
16.9s

Scalable
SurveilEdge

Workload 1
Workload 2
Workload 3

80.8%
74.7%
70.6%

64.2s
16.4s
16.2s

Gecko
Workload 1
Workload 2
Workload 3

92.7%
92.1%
91.3%

12.4s
6.2s
4.0s

frames containing query objects, which significantly drops the
overall average accuracy. The main takeaways are:
1. Overall, Gecko outperforms all baselines by a large mar-

gin, executing query tasks with lower GPU usage while
maintaining or enhancing performance. Gecko improves
accuracy by up to 23.6%∼27.9% compared to the one-
to-one method across all three workloads. With respect to
resource consumption, Gecko obtains at least a 2x GPU
utilization improvement for workloads 2 & 3. Notably, for
workload 3, all video streams are allocated to Orin for query
execution, allowing the remaining two idle devices to handle
more upcoming queries.

2. One-to-one has the fastest response time as it only re-
quires pulling and executing containers on the edge devices.
Besides responsiveness, this method has the worst perfor-
mance. Gecko delivers lower query processing time as each
video query pipeline is executed entirely on the edge device.

3. RECL has similar or even faster response times than Gecko,
as it also provides model selection but no scheduling.

2 4 6 8 1 0 1 2 1 4 1 62 0
4 0
6 0
8 0

1 0 0
GP

U U
sag

e (
%)

(a) N u m . o f C a m e r a s

 T X 2
 X a v i e r
 O r i n

2 4 6 8 1 0� � �

� �

0

��
�

��
	�

��

�

��
�

(b) N u m . o f M o d e l s

 C l o u d S e r v e r (V 1 0 0)
 S e r v e r l e s s

$ 1 / h r $ 0 . 3 5 / h r

Fig. 4. Scalability analysis. (a) Number of cameras supported by 3 edge
devices. (b) Average accuracy degradation comparison between the single
cloud server and serverless when retraining multiple models.

Nonetheless, it is unsuited for our scenario as it does not
take into account resource contention among a number
of video streams. The results demonstrate that RECL en-
counters significant GPU resource contention on the device
Xavier across all workloads, which leads to RECL having
the second-lowest overall query accuracy of all methods.

4. SurveilEdge has comparatively high accuracy in our exper-
iments, yet approximately 12% lower compared to Gecko.
This is mainly because it cannot cope with dynamic
video content changes (data drifts) at runtime. Additionally,
SurveilEdge does not offer model sharing, resulting in its
GPU utilization still being less than half that of Gecko.
Moreover, SurveilEdge’s response time is the slowest, as it
requires fine-tuning a specific model in the cloud based on
selected samples before the query can begin.

5. Scalable SurveilEdge supports model sharing, achieving
higher GPU utilization while compromising marginally on
accuracy compared to naive SurveilEdge. However, due
to a lack of runtime resource reallocation, the scalable
SurveilEdge is also not as resource efficient as Gecko.

Scalability Analysis. For the practical deployment of Gecko, it
is vital to consider the scalability to handle numerous cameras
and queries. Figure 4(a) shows the maximum number of video
streams attached to a single model running on edge devices
TX2, Xavier, and Orin is 4, 9, and 12, respectively. Figure 4(b)
shows the accuracy degradation (w.r.t. single model) when a
single GPU server and serverless support multiple models. Up
to 5 models can be retrained on an NVIDIA Tesla V100 GPU
on the server without causing accuracy loss, while serverless
can support unlimited model retraining due to its elasticity
feature. Moreover, serverless costs only $0.35 per hour when
supporting 5 models retraining, while renting a V100 GPU in
the cloud expenses at least $1 per hour.
Breakdown of Cost. Figure 5 shows the cost of different
components in Gecko. The average response time diminishes
in the sequence of workloads 1, 2, and 3. The reduction can be
attributed to a decrease in the number of pulled models, and
increasing streams that can share models already running on
edge devices. Furthermore, compared to querying, the frame
skipping controller and the hard example miner only take
up a minor computational overhead stably due to optimizing
resource reallocation at runtime.

1 2 30

4

8

1 2

Av
era

ge
Re

spo
nse

 Ti
me

 (s)

W o r k l o a d

 F e a t u r e E x t r a c t o r O b t a i n i n g m o d e l s S c h e d u l e r

2 0 4 0 6 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Co
mp

ute
 Co

st R
atio

 (%
)

W a l l - c l o c k T i m e (m i n)

 F r a m e S k i p p i n g C o n t r o l l e r Q u e r y i n g H a r d E x a m p l e M i n e r

Fig. 5. Breakdown of cost by the components of Gecko.

1 0 � � 1 0 0 1 0 1

7 0

8 0

9 0

� � � 0 1 0 2 0 3 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

CD
F

(a) A c c u r a c y G a i n o v e r O n e - t o - o n e (%)

G e c k o
S u r v e i l E d g e
S c a l a b l e S u r v e i l E d g e

G e c k o
S u r v e i l E d g e

Ac
cur

acy
 (%

)

(b) L a t e n c y (s)

B e t t e r

Fig. 6. Accuracy and latency analysis. (a) CDF of accuracy improvement over
the one-to-one scheme across all video segments. (b) Latency vs. Accuracy
for Gecko and SurveilEdge.

Accuracy Consistency. To demonstrate the benefit that Gecko
consistently improves accuracy, Figure 6(a) plots the cu-
mulative distribution of accuracy improvement of Gecko,
SurveilEdge and the scalable SurveilEdge in comparison to the
one-to-one scheme across all video segments. Gecko achieves
better accuracy than One-to-one in 97% of video segments,
while SurveilEdge and the scalable SurveilEdge are only
better than One-to-one in 84% and 76% of the video data. In
addition, Gecko achieved 20% higher accuracy than over one-
to-one in 40% of videos, while SurveilEdge and the scalable
SurveilEdge achieved it in only 7% and 3% of videos.
Latency/Accuracy Distribution. We further fully evaluate
Gecko’s latency and accuracy benefit compared to SurveilEdge
using workload 1. We measure the average query latency per
frame and the query averaged accuracy in each video segment.
As shown in Figure 6(b), SurveilEdge cannot simultaneously
achieve the same latency and accuracy as Gecko, as it relies
on cloud-based inference to improve the query accuracy of
specific frames, which brings great waiting latency.

C. Ablation Studies

Model Selection. To examine the effect of model selection
introduced in §III-B, we measure the performance of Gecko
when only using one continuously retrained model to query
all objects in a class (all-in-one). As shown in Figure 7(a),
Gecko with model selection consistently outperforms the all-
in-one scheme over time, and is more robust. This is because
edge models are designed with fewer weights and less complex
architectures compared to general models. One edge model
can memorize only a limited number of object appearances
and scenes, and is vulnerable to a dramatic drop in accuracy

0 2 4 6 8
0 . 6

0 . 7

0 . 8

0 . 9
Ac

cur
acy

 (%
)

(a) W a l l - c l o c k T i m e (h r)

 A l l - i n - o n e G e c k o

(b) S c h e m e s
R E C L G e c k o0

2 0

4 0

6 0

8 0

0

2 0

4 0

6 0

8 0

Sel
ect

ion
 Ac

cur
acy

 (%
)

Up
lin

k D
ata

 (K
B)

 U p l i n k d a t a S e l e c t i o n a c c u r a c y

Fig. 7. Impact of Gecko’s model selection. (a) shows query accuracy over
time, and (b) shows uplink data and selection accuracy statistics compared
with RECL’s model selection.

 Q 1 Q 2 Q 3 Q 4

8 5 . 3 8 3 . 4

9 0 . 6 9 0 . 9

T 1 T 2 T 3 T 40

6

1 2

1 8

2 4

Nu
m.

 of
 Ca

me
ras

(a) (b)Q 1 Q 2 Q 3 Q 46 0

7 0

8 0

9 0

1 0 0

Ac
cur

acy
 (%

)

 W i t h o u t F o r k / J o i n G e c k o

9 0 . 4 8 9 . 6 9 1 . 2 9 0 . 7

Fig. 8. Impact of FORK/JOIN primitives on the accuracy of different queries
in workload 2.

when live video data diverges significantly from the recent
training data. In addition, we compare the accuracy predictor
of Gecko with RECL’s gating network (using ResNet18 [33]
that given an image, assigns a score to each model) within the
same collection of models. Figure 7(b) shows the uplink data
and selection accuracy of the two schemes. Owing to the lack
of feature extraction, RECL uploads nearly 8x more data than
Gecko. In contrast, Gecko exhibits a 20% higher probability
of selecting the optimal models than RECL.
FORK/JOIN Primitives. We estimate the impacts of the
FORK/JOIN of model execution on query accuracy at runtime.
To this end, we utilize workload 2 and query 4 distinct objects
on the cluster of the three edge devices. The four queries
Q1∼Q4 are executed in a blended mode, with the number of
involved cameras varying dynamically over time T1∼T4, as
depicted in Figure 8(a). Figure 8(b) shows that certain queries
suffer a considerable decline in accuracy due to resource
contention when FORK/JOIN primitives are disabled.
Fine-grained Stream Transfer. Transferring streams to attach
another specific model in response to data drift can affect
query performance. To this end, we compare Gecko’s accuracy
when disabling the fine-grained transfer and explore the rate
of reusing models presently running on edge devices, which
obviates the need to pull a new model from the cloud. Table
III illustrates that disabling transfer leads to a 1∼3% decrease
in accuracy for workloads 2 and 3. Furthermore, it is worth
noting that more than 70% of transfer streams can reuse
models that are already running on devices, thereby incurring
no computational costs of executing new models.
Hard Example Mining. Table IV compares the hard example

TABLE III
EFFECT OF FINE-GRAINED TRANSFER WITH THREE WORKLOADS.

Workload Accuracy (%) Reuse rate (%)No transfer Gecko
Workload 1 92.6 92.7 -
Workload 2 90.3 91.8 89.5
Workload 3 88.6 91.2 73.7

TABLE IV
EFFECT OF VARIOUS TRAINING FRAME SAMPLING STRATEGIES.

Strategy Up BW (Kbps) Average accuracy (%)

Fixed Sampling Rate 2485 86.70
Adaptive Sampling 275 88.03

Hard Example 169 91.86

mining method described in §III-D with other frame sampling
methods for retraining. The fixed sampling rate method con-
sistently uploads frames by periodically random sampling (5
FPS) on real-time video. Adaptive sampling [27] dynamically
modifies the frame sampling rate at the edge device depending
on the degree and velocity of changes in the video scene.
Table IV shows that Gecko’s hard example mining method is
effective. Overall, it achieves a 5.2% and 3.8% improvement
in accuracy compared to the fixed sampling rate method and
adaptive sampling, while reducing the costly uplink bandwidth
overhead.

V. CONCLUSION

In this paper, we present Gecko to enable resource-efficient
and accurate object queries in real-time video streams at the
edge. Specifically, we design a content-aware feature-based
accuracy predictor for model selection and a scheduler to
assign selected models to edge devices. To handle resource
contention at runtime, Gecko adaptively reallocates computing
resources for different streams by dynamic frame skipping
control and different models by FORK/JOIN primitives. Be-
sides, Gecko improves query accuracy on changing video
content through fine-grained stream transfer and continuous
learning of lightweight models. Compared to prior work for
real-time object queries in videos, our experiments show that
Gecko successfully increases query accuracy by approximately
12% with 2× lower resource costs.

In the future, we plan to enhance our work along two paths.
(1) Support additional execution targets to further improve
query experience. (2) Add optimization (e.g., model merging
[41]) by more fine-grained profiling and planning to fully
exploit the affiliated resources of edge devices.

ACKNOWLEDGMENT

This research is supported by the Key Research and De-
velopment Program of Guangdong Province under Grant
No.2021B0101400003, the National Natural Science Foun-
dation of China under Grant No.62072196, and the Creative
Research Group Project of NSFC No.61821003.

REFERENCES

[1] MarketsandMarkets, “Video Surveillance Market - Global Forecast
to 2028,” https://www.marketsandmarkets.com/Market-Reports/video-
surveillance-market-645.html.

[2] M. Zhang, F. Wang, and J. Liu, “Casva: Configuration-adaptive stream-
ing for live video analytics,” in IEEE INFOCOM 2022 - IEEE Confer-
ence on Computer Communications, 2022, pp. 2168–2177.

[3] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017, pp. 377–392.

[4] L. Zhang, Y. Zhang, X. Wu, F. Wang, L. Cui, Z. Wang, and J. Liu, “Batch
adaptative streaming for video analytics,” in IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications, 2022, pp. 2158–2167.

[5] C. Qu, R. Singh, A. Esquivel-Morel, and P. Calyam, “Learning-based
multi-drone network edge orchestration for video analytics,” in IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications,
2022, pp. 1219–1228.

[6] L. Wang, K. Lu, N. Zhang, X. Qu, J. Wang, J. Wan, G. Li, and J. Xiao,
“Shoggoth: Towards efficient edge-cloud collaborative real-time video
inference via adaptive online learning,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC), 2023, pp. 1–6.

[7] M. Hanyao, Y. Jin, Z. Qian, S. Zhang, and S. Lu, “Edge-assisted
online on-device object detection for real-time video analytics,” in IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications,
2021, pp. 1–10.

[8] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2022, pp. 119–135.

[9] K. Yang, J. Yi, K. Lee, and Y. Lee, “Flexpatch: Fast and accurate object
detection for on-device high-resolution live video analytics,” in IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications,
2022, pp. 1898–1907.

[10] NVIDIA, “NVIDIA Jetson,” https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/.

[11] S. Wang, S. Yang, and C. Zhao, “Surveiledge: Real-time video query
based on collaborative cloud-edge deep learning,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, 2020, pp. 2519–
2528.

[12] B. Hu, P. Guo, and W. Hu, “Video-zilla: An indexing layer for large-scale
video analytics,” in Proceedings of the 2022 International Conference
on Management of Data (SIGMOD), 2022, pp. 1905–1919.

[13] M. Khani, G. Ananthanarayanan, K. Hsieh, J. Jiang, R. Netravali,
Y. Shu, M. Alizadeh, and V. Bahl, “Recl: Responsive resource-efficient
continuous learning for video analytics,” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2023, pp.
917–932.

[14] G. H. Apostolo, P. Bauszat, V. Nigade, H. E. Bal, and L. Wang, “Live
video analytics as a service,” in Proceedings of the 2nd European
Workshop on Machine Learning and Systems, 2022, pp. 37–44.

[15] R. Xu, C.-l. Zhang, P. Wang, J. Lee, S. Mitra, S. Chaterji, Y. Li,
and S. Bagchi, “Approxdet: content and contention-aware approximate
object detection for mobiles,” in Proceedings of the 18th Conference on
Embedded Networked Sensor Systems, 2020, pp. 449–462.

[16] A. Suprem, J. Arulraj, C. Pu, and J. Ferreira, “Odin: Automated drift
detection and recovery in video analytics,” Proceedings of the VLDB
Endowment, vol. 13, no. 12, p. 2453–2465, 2020.

[17] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: optimizing declarative
aggregation and limit queries for neural network-based video analytics,”
Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 533–546, 2019.

[18] F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh,
H. Balakrishnan, M. Cafarella, T. Kraska, and S. Madden, “Miris: Fast
object track queries in video,” in Proceedings of the 2020 International
Conference on Management of Data (SIGMOD), 2020, pp. 1907–1921.

[19] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” Proceedings of
the VLDB Endowment, vol. 10, no. 11, pp. 1586–1597, 2017.

[20] J. Cao, K. Sarkar, R. Hadidi, J. Arulraj, and H. Kim, “Figo: Fine-
grained query optimization in video analytics,” in Proceedings of the
2022 International Conference on Management of Data (SIGMOD),
2022, pp. 559–572.

[21] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC), 2018, pp. 115–131.

[22] J. Lee, B. Varghese, and H. Vandierendonck, “Roma: Run-time ob-
ject detection to maximize real-time accuracy,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2023, pp. 6405–6414.

[23] T.-W. Chin, R. Ding, and D. Marculescu, “Adascale: Towards real-time
video object detection using adaptive scaling,” Proceedings of Machine
Learning and Systems, vol. 1, pp. 431–441, 2019.

[24] R. Xu, J. Lee, P. Wang, S. Bagchi, Y. Li, and S. Chaterji, “Literecon-
fig: Cost and content aware reconfiguration of video object detection
systems for mobile gpus,” in Proceedings of the Seventeenth European
Conference on Computer Systems (EuroSys), 2022, pp. 334–351.

[25] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger, “Main-
stream: Dynamic stem-sharing for multi-tenant video processing,” in
2018 USENIX Annual Technical Conference (ATC), 2018, pp. 29–42.

[26] Y. Huang, H. Zhao, X. Qiao, J. Tang, and L. Liu, “Towards video stream-
ing analysis and sharing for multi-device interaction with lightweight
dnns,” in IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications, 2021, pp. 1–10.

[27] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh, “Real-
time video inference on edge devices via adaptive model streaming,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021, pp. 4572–4582.

[28] S. Jin, A. RoyChowdhury, H. Jiang, A. Singh, A. Prasad, D. Chakraborty,
and E. Learned-Miller, “Unsupervised hard example mining from videos
for improved object detection,” in Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 307–324.

[29] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2018, pp. 263–274.

[30] M. Zhang, F. Wang, Y. Zhu, J. Liu, and B. Li, “Serverless empowered
video analytics for ubiquitous networked cameras,” IEEE Network,
vol. 35, no. 6, pp. 186–193, 2021.

[31] B. Hou, S. Yang, F. Kuipers, L. Jiao, and X. Fu, “Eavs: Edge-
assisted adaptive video streaming with fine-grained serverless pipelines,”
in INFOCOM 2023 - IEEE International Conference on Computer
Communications, 2023.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 4510–4520.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[34] Q. Hu, M. Zhang, P. Sun, Y. Wen, and T. Zhang, “Lucid: A non-intrusive,
scalable and interpretable scheduler for deep learning training jobs,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2023, pp. 457–472.

[35] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss:
Faster and better learning for bounding box regression,” in Proceedings
of the AAAI conference on artificial intelligence (AAAI), vol. 34, no. 07,
2020, pp. 12 993–13 000.

[36] L. Cai, X. Shen, J. Pan, and J. W. Mark, “Performance analysis
of tcp-friendly aimd algorithms for multimedia applications,” IEEE
Transactions on Multimedia, vol. 7, no. 2, pp. 339–355, 2005.

[37] NVIDIA, “DeepStream SDK,” https://developer.nvidia.com/deepstream-
sdk.

[38] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[39] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” arXiv preprint arXiv:1405.0312, 2014.

[40] D. Merkel et al., “Docker: Lightweight linux containers for consistent
development and deployment,” Linux Journal, vol. 239, no. 2, p. 2, 2014.

[41] A. Padmanabhan, N. Agarwal, A. Iyer, G. Ananthanarayanan, Y. Shu,
N. Karianakis, G. H. Xu, and R. Netravali, “Gemel: Model merging for
memory-efficient,real-time video analytics at the edge,” in 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2023, pp. 973–994.

