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Abstract—Graph contrastive learning based on augmentation
strategies has recently demonstrated remarkable performance.
Existing methods typically jointly leverage attribute and struc-
tural augmentations to generate graph views, learning data in-
variance information through contrasting sample pairs. However,
this joint approach may deviate from the expectation of seman-
tically similar before and after augmentation. The propagation
of attribute information in graphs usually occurs through their
structure, meaning that structural and attribute augmentations
can interfere with each other and potentially distort the graph’s
semantics. To address this, we propose a decoupled augmentation
framework for graph contrastive learning, which eliminates
the mutual interference between the two levels of augmenta-
tion while fully exploring graph information. Specifically, our
framework employs separate encoders to learn data invariance
under different augmentation levels, and it considers the positive
gains generated between these levels. Experimental results on
five public datasets show that the proposed method is more
competitive than state-of-the-art approaches.

Index Terms—Self-supervised learning, Graph representation,
Contrastive learning

I. INTRODUCTION

Graph neural networks (GNNs) are a powerful tool for
analyzing graph-structured data, aiming to extract low-
dimensional representations of nodes from structures and at-
tributes. GNNs have demonstrated significant potential across
various application areas [1, 2, 3, 4]. However, traditional
GNNs [5, 6] are built in a supervised manner, requiring a
large amount of costly labeled data for training. To reduce
this dependency on labels, graph contrastive learning (GCL), a
prominent form of self-supervised learning, has been proposed
and has shown promising results in numerous downstream
tasks [7, 8, 9].

A typical GCL method first applies joint augmentation of
attributes and structures to generate two new views, then learns

*The corresponding author. jintaisong@xmu.edu.cn Supported by
the National Natural Science Foundation of China (No. 62072386), Yunnan
Provincial Major S&T Special Plan Project (No. 202402AD080001), Henan
Key R&D Project (No. 231111212000), Open Foundation of Henan Key Lab
of General Aviation Technology (No. ZHKF-230212), Key Lab of Oracle
Information Processing of MOE (No. OIP2024E002), and Guangdong Key
R&D Program (No. 2021B0101400003).

Fig. 1. Performance of different variants of GRACE for node classification
on different datasets. GRACE is one of the most popular frameworks in
GCL. Where (A), (S), and (A&S) represent using attribute augmentation
only, using structural augmentation only, and jointly using two levels of
augmentation, respectively.

node representations by contrasting sample pairs from these
views. The performance of graph contrastive models relies
heavily on effective augmentation strategies, which have been
a focal point for researchers. For instance, GRACE [10] con-
structs graph views by randomly removing edges and masking
node attributes. GCA [11] refines GRACE by using node
centrality as guiding information to preserve important links
and attributes. CSGCL [12] introduces perturbations to edges
and attributes, guided by community strength, to preserve
differences among communities in the generated views.

Although these approaches have been successful, they all
employ a strategy of jointly leveraging structural-level and
attribute-level augmentations. Current GCL models [13, 14]
typically use GNNs [5] as the base encoder, and attribute
information to propagate based on the structure. The new
views generated from this two-level joint augmentation may
lead to significant semantic shifts compared to the input
graph, resulting in suboptimal performance. Empirically, we
observed that using a single-level augmentation could yieldIC
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Fig. 2. The overview of our proposed framework: GDA. We first apply attribute augmentation and structural augmentation separately to the input graph to
obtain new views at different levels. Then these graph views are fed into the encoder at the corresponding level to obtain node embeddings. GDA learns
efficient node representations by minimizing attribute level contrastive loss Lattr , structure level contrastive loss Lstr , and cross-level contrastive loss Lcross

between Ha2 and Hs1.

better performance for GCL models, as shown in Fig. 1.
A natural question arises thereby: Is there an effective way
to better leverage the rich invariant information provided by
augmentations at both the attribute and structural levels?

To answer this question, we propose a novel Graph con-
trastive learning with Decoupled Augmentation framework,
termed GDA. It mines graph information under different
augmentation by decoupling attribute and structure augmen-
tation. We first apply attribute and structural augmentations
separately to the input graph and use two distinct encoders to
capture invariant information at various augmentation levels.
In addition, to align the representation between different levels
and to mine the beneficial information between different
levels, a novel cross-level contrastive loss is proposed. By
jointly optimizing attribute level loss, structure level loss, and
cross-level loss, our framework could learn effective node
representations without manual labels. The contributions of
this work can be summarized as follows:

• We empirically show that joint augmentation of both
attribute and structure levels may be a suboptimal choice
for GCL.

• We propose a novel GCL framework, GDA, which more
effectively captures distinct aspects of invariance informa-
tion provided by the two-level augmentation of attributes
and structures.

• Experimental results demonstrate that our approach is
more competitive than state-of-the-art approaches.

II. METHODOLOGY

In this section, we present the proposed GDA framework in
detail. Fig. 2 shows the overall architecture of GDA.

A. Preliminaries and Notations

let G = (V, E) denote a graph, where V = {v1, v2, · · · , vN}
represents the set of nodes, E ⊆ V × V represent the set of
edges. The attribute matrix is denoted as X ∈ Rn×d, where
xi ∈ Rd is the attribute vector of node vi. The adjacency
matrix is denoted as A ∈ {0, 1}n×n, where Aij = 1 iff
(vi, vj) ∈ E . Besides, in the self-supervised training setting,
the class information Y of nodes is unknown.

Given a graph G with no labels, the goal of GCL is to learn
one or more encoders and generate node embeddings that can
be used in downstream tasks. At the start of training, GCL gen-
erates multiple graph views (p1, . . . , pK) by applying random
perturbations to the input graph. Graph perturbations include
attribute masking, edge removing, subgraph sampling, etc.
Then views are fed into corresponding encoders (f1, . . . , fM )
to obtain node embeddings

(
h1, . . . , hK

)
in the different

views. These embeddings are used to train the encoders by
optimizing contrastive objective that aims to maximize the
mutual information MI

(
hi, hj

)
between the same instance

in different views:

max
{fk}K

k=1

1∑
i̸=j σi,j

∑
i ̸=j

σi,jMI
(
hfk
i , hfk

j

) . (1)

where σi,j ∈ {0, 1}, and σi,j = 1 if the mutual information
is computed between hfk

i and hfk
j , and σi,j = 0 otherwise.

The most commonly used optimization objective in GCL is
InfoNCE [15], which is an estimator of the lower bound of
mutual information.

B. Attribute-level Contrastive Learning

GCL typically uses GNNs as the base encoder, which prop-
agates attribute information through the graph structure. When
both attributes and structure are perturbed simultaneously, the
semantics of the graph data may undergo significant changes.
Moreover, specific attribute-level invariant information may
be disrupted or even overshadowed by structural changes.
Hence, we propose using a separate module to learn invariant
information under attribute augmentation.

We adopt the widely used attribute masking technique for
attribute-level augmentation. A two-layer GCN serves as the
base encoder, which can be formally defined as follows:

f (X,A) = σ
(
D̂−1/2ÂD̂−1/2XW l

)
, (2)

where Â = A + I is the adjacency matrix with self-loops,
D̂ =

∑
iÂi is the degree matrix, σ (·) is a nonlinear activation

function, and W l is the trainable weight matrix.
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The new views of the attribute level are fed into the encoder
to obtain the node embeddings Ha1, Ha2. For node vi, node
embeddings ha1

i and ha2
i form the positive samples, and node

embeddings of other nodes are regarded as negative samples.
Therefore, the loss function of attribute-level contrastive learn-
ing can be defined by the InfoNCE loss as

Lattr (vi) =

log
eθ(h

a1
i ,ha2

i )/τ

eθ(h
a1
i ,ha2

i )/τ +
∑
j ̸=i

eθ(h
a1
i ,ha2

j )/τ +
∑
j ̸=i

eθ(h
a1
i ,ha1

j )/τ
.

(3)

where τ is the temperature parameter and θ (·, ·) is the cosin
similarity function.

C. Structure-level Contrastive Learning

The specific invariant information at the structural level may
also be affected by changes in attributes. We similarly use
a separate module to learn the specific invariant information
under structural augmentation. We choose the widely used
edge removing as the augmentation method for the structural
level. Similar to attribute-level contrastive learning, a two-layer
GCN is used as the encoder, but with different weights.

The new views of the structural level are fed into the
corresponding encoder to obtain the node embeddings Hs1,
Hs2. Given node embeddings hs1

i and hs2
i of node vi, the loss

function of structure-level contrastive learning can be defined
as

Lstr (vi) =

log
eθ(h

s1
i ,hs2

i )/τ

eθ(h
s1
i ,hs2

i )/τ +
∑
j ̸=i

eθ(h
s1
i ,hs2

j )/τ +
∑
j ̸=i

eθ(h
s1
i ,hs1

j )/τ
. (4)

D. Cross-level Loss

To align the representations of different layers and leverage
the positive gains between augmentations at different layers,
we introduced a cross-level contrastive loss. The cross-level
loss aims to align the representations of Ha2 and Hs1, and
we have observed that contrasting views from different levels
can enhance the performance of the proposed framework.

Lcross (vi) =

log
eθ(h

a2
i ,hs1

i )/τ

eθ(h
a2
i ,hs1

i )/τ +
∑
j ̸=i

eθ(h
a2
i ,hs1

j )/τ +
∑
j ̸=i

eθ(h
a2
i ,ha2

j )/τ
.

(5)

E. Overall Objective Loss.

The overall objective loss of GDA is defined to be a sum of
attribute-level loss, structure-level loss, and cross-level loss:

L =
1

N

N∑
i=1

[λ1Lattr (vi) + λ2Lstr (vi) + λ3Lcross (vi)] .

TABLE I
STATISTICS OF DATASETS USED IN OUR EXPERIMENTS.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

where λ1, λ2, and λ3 are tuning hyperparameters to weight
different loss terms, and different datasets usually correspond
to different values.

III. EXPERIMENTS

A. Experiment Setting

Datasets. To enable a comprehensive comparison, we utilized
five open graph datasets, including Cora [5], CiteSeer [5],
Amazon-Computers [16], Amazon-Photo [16], and Coauthor-
CS [16], to evaluate node classification performance. The
statistics of the datasets are provided in Table I.
Baselines. We compared with classic unsupervised models
including Logistic regression (LogReg) [17], and node2vec
[18]. Additionally, we compared it with the recently proposed
excellent self-supervised models including DGI [19], MVGRL
[13], GRACE [10], GCA [14], BGRL [20], COSTA [7],
and CSGL[12]. To better demonstrate the effectiveness of
our proposed approach, we also compared it with supervised
methods GCN [5] and GAT [6]. The official implementations
were used to report the performance of all baselines.
Evaluation protocols. We follow the linear evaluation scheme
proposed in [19], where each model is first trained in an
unsupervised manner, and then the node representations out-
putted by the encoder are fed into a simple logistic regression
classifier. All datasets are randomly split the remaining four
datasets into 10%, 10%, and 80% for training, validation, and
testing, respectively.

B. Node Classification

The experimental results are shown in Table II, where the
best performance is highlighted in bold and the second best
performance is underlined. It is observed that, apart from
the Amazon-Computers dataset, GDA outperforms all self-
supervised baselines on the other four datasets. We attribute
this to its ability to effectively learn beneficial information
brought by different levels of augmentation. Furthermore, we
also note that the performance of most contrastive learning
models surpasses traditional supervised methods, highlighting
the superiority of contrastive learning.

Additionally, we observe that GDA achieved a significant
performance improvement compared to GRACE. Both use the
same perturbation augmentations at the attribute and structural
levels but differ in that one uses joint augmentation while the
other uses decoupled augmentation. This phenomenon may
offer a new research direction for graph contrastive learning.
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TABLE II
PERFORMANCE ON NODE CLASSIFICATION IN TERMS OF ACCURACY (%).

Method Input Cora CiteSeer Amazon-Computers Amazon-Photo Coauthor-CS

Sup.GCN X,A,Y 81.50 ± 0.10 71.62 ± 0.26 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31
Sup.GAT X,A,Y 82.34 ± 0.08 72.24 ± 0.15 86.93 ± 0.29 92.56 ± 0.35 92.32 ± 0.24

Raw (LogReg) X 64.61 ± 0.22 65.77 ± 0.15 71.98 ± 0.00 78.53 ± 0.00 90.37 ± 0.00
node2vec A 74.32 ± 0.20 52.28 ± 0.07 71.79 ± 0.05 85.08 ± 0.03 85.08 ± 0.03

DGI X,A 82.63 ± 0.45 68.83 ± 0.71 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63
MVGRL X,A 83.11 ± 0.12 73.33 ± 0.03 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12
GRACE X,A 83.31 ± 0.25 72.12 ± 0.28 86.88 ± 0.25 92.33 ± 0.25 92.49 ± 0.03
GCA X,A 82.89 ± 0.21 72.49 ± 0.31 87.85 ± 0.22 92.49 ± 0.18 93.06 ± 0.01
BGRL X,A 83.80 ± 0.34 72.76 ± 0.16 87.37 ± 0.40 91.57 ± 0.44 92.59 ± 0.14
COSTA X,A 84.32 ± 0.22 72.92 ± 0.31 88.32 ± 0.03 92.56 ± 0.45 92.95 ± 0.12
CSGL X,A 84.27 ± 0.32 72.56 ± 0.20 89.98 ± 0.26 92.87 ± 0.33 93.17 ± 0.12

GDA X,A 85.42 ± 0.23 73.61 ± 0.22 89.48 ± 0.29 93.41 ± 0.32 93.29 ± 0.08

C. Ablation Study

To evaluate the impact of main components on model
performance, we conducted a series of ablation experiments.
GDA-A, GDA-S, and GDA-C represent the removal of
attribute-level contrastive learning, structure-level contrastive
learning, and cross-level loss, respectively. The results shown
in Table III, indicate that each component contributes posi-
tively to the model performance. Additionally, when the cross-
level loss is removed, performance decreases across all three
datasets, suggesting a positive gain between the augmentations
at the two different levels.

TABLE III
ABLATION STUDY ON NODE CLASSIFICATION.

Variant Cora Amazon-Computers Coauthor-CS

GDA-A 83.25 ± 0.10 89.24 ± 0.24 90.13 ± 0.04
GDA-S 82.97 ± 0.22 80.83 ± 0.21 91.25 ± 0.13
GDA-C 83.44 ± 0.24 88.94 ± 0.13 92.24 ± 0.17

GDA 85.42 ± 0.23 89.48 ± 0.29 93.29 ± 0.08

D. Case Study

In principle, our framework allows the integration of various
existing attribute and structure-level augmentation strategies.
GCA is one of the most popular GCL frameworks and designs
augmentations at two levels by leveraging node centrality. We
replaced the augmentations in GDA with those from GCA and
evaluated the performance of GDA (GCA) on three datasets.
As shown in Table IV, the results demonstrate consistent
improvements of GDA over the base GCA, further validating
the potential of the proposed architecture.

E. Hyperparameter Analysis

In Fig. 3, we conduct a hyperparameter analysis of the
perturbation rates for view generation (attribute masking rate
and edge removing rate) and the temperature coefficient τ .
Both hyperparameters are varied from 0.1 to 0.9. Fig. 3
(a) shows GDA’s performance on the Cora dataset under

TABLE IV
THE PERFORMANCE OF THE GDA MODEL USING THE GCA

AUGMENTATION STRATEGY IN TERMS OF ACCURACY.

Method CiteSeer Amazon-Computers Amazon-Photo

GCA 72.49 ± 0.31 87.85 ± 0.22 92.49 ± 0.18

GDA (GCA) 73.15 ± 0.19 88.75 ± 0.28 92.87 ± 0.21

different τ . The model performs best when τ is set to 0.5,
with both larger and smaller values leading to performance
degradation. Fig. 3 (b) illustrates GDA’s performance on the
Cora dataset across different perturbation rates. pa and ps
represent the perturbation rates of the two levels respectively.
The results indicate that our model is relatively insensitive to
the perturbation hyperparameter, due to its ability to capture
invariant information from various aspects of the data.

(a) temperature coefficient τ (b) perturbation rates

Fig. 3. Hyperparameter analysis on Cora.

IV. CONCLUSION

In this paper, we propose a novel graph contrastive repre-
sentation framework with decoupled augmentation. Our model
eliminates potential interference from the joint effects of
attributes and structural levels by decoupling their augmenta-
tions. By effectively utilizing the rich information provided by
different-level augmentations, the encoders can learn expres-
sive node representations. Experimental results on five public
datasets validate the effectiveness of the proposed method.
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