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Abstract—Heterogeneous Graph Neural Networks (HGNNs)
aim to embed rich structural and semantic information of hetero-
geneous graphs into low-dimensional node representations. While
HGNNs extend the foundational work of homogeneous Graph
Neural Networks, the methodology for effectively transforming
heterogeneous graphs into homogeneous graphs and then learn-
ing node representations remains under-explored. In this paper,
we propose a novel heterogeneous graph embedding method
via the Homogeneous Graph Extraction strategy, termed HGE.
Specifically, the proposed method ingeniously harnesses infor-
mation clusters and metapaths to extract tailored homogeneous
graphs from the complex heterogeneous graph. Subsequently,
these distilled homogeneous graphs are fed into a weight-shared
homogeneous graph encoder to obtain embeddings with diverse
semantic information. Finally, we employ an attention mech-
anism, which adeptly fuses embeddings derived from distinct
homogeneous graphs, resulting in the more expressive capability
of the nodes. The effectiveness of the proposed architecture was
demonstrated through experiments on three real heterogeneous
graph datasets.

Index Terms—Heterogeneous Information Network, Graph
Representation Learning, Attention Mechanism

I. INTRODUCTION

In real-world scenarios, data predominantly exists in the
form of heterogeneous graphs. A heterogeneous graph [1, 2, 3]
is composed of multiple types of nodes and edges, containing
rich structural and semantic information. For example, as
shown in Fig. 1 (a), the citation network DBLP comprises
four types of nodes (authors, papers, venues, and terms) and
multiple types of edges (author-write-paper, term-in-paper,
paper-contain-term, etc.). Learning node representations in a
heterogeneous environment poses a challenge.

To tackle the challenges posed by the heterogeneous
environment, various heterogeneous graph neural networks
(HGNNs) [4, 5, 6, 7, 8] have been proposed. Existing HGNNs
can be primarily divided into two kinds of methods, namely
metapath-based and relation-based methods. Metapath-based
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methods [9, 10, 11, 12, 13] leverage hand-crafted metapaths
to capture the semantic relationships and structural information
between nodes. Each metapath represents distinct semantic
information, and the resulting embedding vectors are a fusion
of multiple semantic information. However, these HGNNs
typically focus on capturing sequential information while
disregarding other higher-order information. Relation-based
methods [14, 15, 16, 17] do not require the manual speci-
fication of metapaths. These models can aggregate messages
from the local neighbors of nodes, similar to traditional GNNs,
but they require the design of intricate aggregation layers to
handle different types of nodes or edges.

In response to the limitations demonstrated by the existing
HGNNs mentioned above, we propose a heterogeneous graph
representation learning method based on Homogeneous Graph
Extraction (HGE), which eliminates the need for complex
aggregation layers while effectively capturing rich heteroge-
neous information. We only need to build homogeneous graphs
for target-type nodes that are used for downstream tasks. To
construct new node features, we introduce the concept of
information cluster, the new features of nodes are extracted
from their corresponding information clusters. The adjacency
matrix, containing solely the target type nodes, is obtained by
traversing the meta adjacency matrix, and different adjacency
matrices can be obtained according to different metapaths.
These distinct adjacency matrices are capable of capturing
various sequential information. By combining the newly ex-
tracted node features and structures, multiple distinct homoge-
neous graphs are generated. These graphs are then fed into a
homogeneous graph encoder to learn node embeddings under
different structural contexts. Finally, an attention mechanism is
employed to further fuse node embeddings. Our contributions
are summarised as follows:

• We re-examine heterogeneous graph embedding learning
from the perspective of homogeneous graph extraction
and study effective conversion methods from heteroge-
neous graphs to homogeneous graphs.

• We propose a simple and effective new heterogeneous
graph neural network that can capture both sequential
information and high-order local information.IC
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(a) Heterogeneous Graph (b) Meta Relation (c) Meta Adjacency Matrix (d) Information Cluster

Fig. 1. Heterogeneous information network graph composed of DBLP dataset.

• Experiments on three real-world datasets demonstrate the
superiority of the proposed model.

II. PRELIMINARIES

In this section, we give formal definitions of some key ter-
minologies. Graphical illustrations for some of the definitions
are provided in Fig. 1.

Heterogeneous Graph. A heterogeneous graph is repre-
sented as G = (V, E ,A,R), where V represents the set of
nodes in the graph, and E denotes the set of links. A and R
denote the set of node types and links types, and |A|+|R| > 2.

Metapath. A metapath defines the composite relationships
among different nodes. Formally, A1

R1−→ A2
R2−→ · · · Rl−→

Al+1 can be abbreviated as the path A1A2 · · ·Al+1, describing
the intrinsic association between nodes A1 and Al+1. Different
composite patterns can represent distinct semantics.

Meta Relation. Meta relations are utilized to depict the
linking relationships between nodes of diverse types. Specifi-
cally, for the edge e = (s, t) between node s and node t in the
graph, the meta relation between the two nodes is denoted as
⟨ϕ (s) , ψ (e) , ϕ (t)⟩ and the inverse meta relation is denoted
as

〈
ϕ (t) , ψ (e)

−1
, ϕ (s)

〉
.

Meta Adjacency Matrix. The Meta Adjacency Matrix
represents whether there is a corresponding meta-relationship
between the nodes, where each element signifies the existence
or absence of an edge between the corresponding nodes.

III. METHOD

In this section, we formally propose heterogeneous graph
embedding learning based on homogeneous graph extrac-
tion (HGE). The architecture of HGE is shown in Fig. 2,
which contains three main parts: (1) Homogeneous graph
extraction, (2) Encoding homogeneous graphs, and (3) Inter-
homogeneous graphs aggregation.

A. Homogeneous Graphs Extraction

To construct homogeneous graphs from a given heteroge-
neous graph, it is only necessary to focus on the target type
nodes for downstream tasks. The new features of the nodes
in the same types are obtained by the information cluster
corresponding to the nodes. Seeking to capture structural
information from different perspectives, we generate diverse
homogeneous graph structures based on various metapaths.

1) Obtain new features: The new features for each node
are derived from the associated information cluster, which
encompasses nodes of all types {a1, a2, . . . , aM} ∈ A. The
information cluster is defined as follows:

Definition 1 (Information Cluster). An information cluster is
defined as consisting of a central node and other types of nodes
that are closest to the central node. Other types of nodes in
the information cluster can provide rich local information for
the central node. Fig. 1 (d) shows the information clusters
corresponding to nodes A1 and A2.

We first obtain the features of nodes of the same type within
the information cluster through mean aggregation, as shown
below:

ham
i =

1

∥Cam
i ∥

∑
j∈Cam

i

Xj , (1)

where ham
i represents the information about type am ∈ A in

the information cluster of node i, Cam
i is all nodes of type am

in the information cluster corresponding to node i, and X is
raw feature matrix.

Since the feature vectors obtained above may have unequal
dimensions, or be situated in different feature spaces. So the
resulting hai is projected into the same data space:

h
′am
i =Wam

· ham
i , (2)

where Wam
is the parametric weight matrix.

Next, we aggregate different types of information within
the information cluster through the attention mechanism to
derive new features for the nodes. First, we summarize the
importance of each type by averaging the transformed vectors
of different types across all information clusters:

sam
=

1

|Vam|
∑

i∈Vam

qT1 · tanh
(
W1 · h

′am
i + b1

)
, (3)

where W1 is the weight parameter matrix, b1 is the learnable
bias vector, qT1 is the parameterized attention vector. We use
the softmax function to normalize the importance of different
types of nodes:

βam
=

exp (sam
)∑M

m=1 exp (sam)
, (4)
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Fig. 2. The overall architecture of HGE. The example is based on DBLP
dataset with node types author (A), paper (P), term (T), and venue (V). This
figure exhibits the extraction of homogeneous graphs and the acquisition of
node embeddings under three metapaths.

with the learned importance as weight coefficients, we can
integrate these distinct embeddings of different types to derive
embedding hi that can serve as new feature for the node. The
operation is shown as follows:

hi =

M∑
m=1

βam
· h

′am
i . (5)

2) Obtaining homogeneous structures: In heterogeneous
graphs, nodes of the same type often have few or even no
direct edges. To construct homogeneous structures from a
given heterogeneous graph, we employ a traversal method on
the meta adjacency matrix. Different metapaths can be used
to derive different Homogeneous adjacency matrices, which
contain serialized semantic information. Formally, it can be
expressed as follows:

Γ (Pk) :M →Mk. (6)

where M is an meta adjacency matrix, Mk is a homogeneous
adjacency matrix, and Γ is a traversal function, which traverses
M to generate Mk based on metapath.

B. Encoding Homogeneous Graphs

By combining the newly obtained node features with dif-
ferent homogeneous adjacency matrices, we create distinct
homogeneous graphs. Subsequently, these graphs are fed into a
homogeneous graph encoder to learn node embeddings under
different structural contexts. The encoder uses the GCN [18]
as the encoder, which can be formalized as

f (X,A) = σ
(
D̂−1/2ÂD̂−1/2XW l

)
, (7)

where Â = A + I is the adjacency matrix with self-loops,
D̂ =

∑
iÂi is the degree matrix, σ (·) is a nonlinear activation

function, and W l is the trainable matrix for the l-th layer.
The embeddings obtained by the encoder from a homogeneous
graph are represented as:

ZMk
= f (H,Mk) . (8)

TABLE I
DATASET STATISTICS AND CHARACTERISTICS.

Nodes Target node (Classes) Metapath

DBLP Author, Paper Paper APA, APTPA
Term, Venue 3 APVPA

IMDB Movie, Director Author MAM, MDM
Actor, Keyword 4 MKM

ACM Author, Paper Movie PP, PAP
Subject, Trem 5 PSP, PTP

where H represents the newly extracted features matrix men-
tioned above, where hi is the new feature of vi and Mk is a
homogeneous adjacency matrix.

C. Inter-homogeneous Graphs Aggregation

Given k homogeneous graphs, after feeding into the en-
coder, we can obtain the corresponding embedding matrices
{ZM1 , . . . , ZMK

}. The attention mechanism is used to inte-
grate the embeddings from different homogeneous graphs, and
we generate the final embedding vectors for each node. First,
we consider each homogeneous graph by averaging the node-
specific vectors produced by all target nodes v ∈ VA passing
through different homogeneous graphs:

sMk
=

1

|VA|
∑
v∈VA

tanh
(
W2 · zMk

v + b2
)
, (9)

where W2 and b2 are learnable parameters. We integrate
various information into the target node through the attention
mechanism as follows:

eMk
= qT2 · sMk

, (10)

βMk
=

exp (eMk
)∑K

k=1 exp (eMk
)
, (11)

hv =

K∑
k=1

βMk
· zMk

v , (12)

where qT2 is the parameterized attention vector.
The finally obtained node representations will be used in

different downstream tasks, such as node classification and
node clustering. In these tasks, the model is optimized by
minimizing the cross-entropy:

L = −
∑
v∈VL

C∑
c=1

yv [c] · log hv [c] . (13)

where VL is the set of nodes involved in the computation, C
is the number of categories in the dataset, yv is the category
vector of node v, and hv is the probability vector output of
node v.
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IV. EXPERIMENTS

A. Datasets and Baselines

The datasets required for the experiments are from DBLP,
ACM, and IMDB of the HGB benchmark. We follow the
setting of [13, 17] and the simple statistics of the dataset are
shown in Table I.

We compare HGE with 10 baselines in three categories:
homogeneous graph Neural Networks: GCN [18], GAT [19].
relation-based heterogeneous graph Neural Networks: RSHN
[14], HetSANN [15], HGT [16], HGB [17]. and metapath-
based heterogeneous graph Neural Networks: HAN [11],
MAGNN [12], GNT [10], SeHGNN [13].

B. Evaluation Metrics

For all datasets, the same strategy is adopted: 24% for
training, 6% for validation, and 70% for testing, with all edges
available during training. Micro-F1 and Macro-F1 are used as
evaluation metrics for the node classification task, while NMI
and ARI are used for the node clustering task.

C. Node Classification

In the semi-supervised node classification task, the experi-
mental results of our HGE model compared to the baseline are
shown in Table II. From the performance comparison, we can
observe that the proposed HGE outperforms all baselines in
most cases. Particularly, on the DBLP and ACM datasets, our
method further improves performance even when the existing
baselines have already achieved fairly good performance.
Moreover, The performance of simple GAT is comparable to
the performance of many meticulously designed HGNNs.

TABLE II
NODE CLASSIFICATION PERFORMANCE COMPARISON OF DIFFERENT

METHODS ON THREE DATASETS.

Macro-F1 Micro-F1

Method DBLP IMDB ACM DBLP IMDB ACM

GCN 90.84 57.88 92.17 91.47 64.82 92.12
GAT 93.83 58.94 92.26 93.39 64.86 92.19

RSHN 93.34 59.85 90.50 93.81 64.22 90.32
HetSANN 78.55 49.47 90.02 80.56 57.68 89.91
HGT 93.01 63.00 91.12 93.49 67.20 91.00
HGB 94.01 63.53 93.42 94.46 67.36 93.35

HAN 91.67 57.74 90.89 92.05 64.63 90.79
MAGNN 93.28 56.49 90.88 93.76 64.67 90.77
GTN 93.52 60.47 91.31 93.97 65.14 91.20
SeHGNN 94.86 66.63 93.95 95.24 68.21 93.87

HGE (ours) 94.91 65.49 94.37 95.33 68.57 94.32

D. Node Clustering

The comparison of performance between the HGE and base-
line models is shown in Table III. We can observe that in most
cases, HGE outperforms all other baselines in node clustering.
Furthermore, it is noticeable that all models exhibit poor
performance on the IMDB dataset. This phenomenon could
be attributed to the fact that the target nodes (movie nodes)

in IMDB have multiple labels, but during our experiments,
we only selected one of them as its corresponding true label.
Additionally, combining the information from Table II, we can
deduce that the node classification results and clustering results
exhibit a positive correlation overall.

TABLE III
NODE CLUSTERING PERFORMANCE COMPARISON OF DIFFERENT

METHODS ON THREE DATASETS.

NMI ARI

Method DBLP IMDB ACM DBLP IMDB ACM

HGT 78.58 14.39 64.90 84.49 11.62 67.40
HGB 81.48 15.25 75.38 86.85 12.69 80.65
HAN 78.54 15.46 64.82 84.41 11.19 68.81
MAGNN 80.47 15.73 73.34 86.32 12.76 77.99
GTN 79.82 11.70 70.05 85.49 7.76 74.85
SeHGNN 83.82 16.09 77.00 88.82 13.91 82.34

HGE (ours) 84.23 16.22 78.76 88.98 13.09 83.67

E. Ablation Study
To evaluate the influence of new node features and homo-

geneous structures guided by different metapaths on model
performance, a series of ablation experiments are conducted
in this section. “w/o New F” represents a model variant that
does not use the extracted new node features and only uses
the original node features. Fig. 3 illustrates the results of the
ablation study on the DBLP and ACM datasets.

From the Fig. 3, it can be observed that each component
contributes positively to the model’s performance. Notably,
when only the original node features are utilized, there is a
significant performance drop, indicating that the new features
captured by information clusters contribute richer information
to the nodes. Additionally, we observe that metapaths vary in
importance and tend to be more important the shorter they are.

Fig. 3. Effects of the components in HGE on node classification task.

V. CONCLUSION

In this paper, we have proposed a novel method, termed
HGE, for heterogeneous graph representation learning based
on homogeneous graph extraction. HGE is designed to cap-
ture high-order local information of a heterogeneous graph
through information clusters and captures sequential infor-
mation through metapaths. The rich semantic information is
encapsulated within different homogeneous graphs. By lever-
aging a homogeneous graph encoder and attention mechanism,
different semantic information is effectively fused, resulting in
significant performance improvement.
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