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Abstract—Directly applying CLIP to point cloud action recognition can
cause severe accuracy collapse. In this paper, we propose PointAction-
CLIP, which successfully prevents this transfer degradation with a triple-
path CLIP, including the image path, the sequence path, and the label
path. Specifically, the image path projects the 3D point cloud sequence
onto a 2D image sequence and uses a visual encoder to extract its
feature. It also captures the temporal feature of the image sequence
with a temporal encoding transformer. The sequence path adopts a pre-
trained sequence encoder to encode the original point cloud sequence to
obtain its spatiotemporal feature. The label path encodes the candidate
labels with a text encoder. Finally, we fuse the output of the three paths
to obtain the predicted action label. Extensive experiments validate that
PointActionCLIP outperforms state-of-the-art (SOTA) methods.

Index Terms—point cloud, action recognition, triple-path, temporal
encoding transformer, sequence encoder

I. INTRODUCTION

CLIP [1] is an outstanding pre-trained language-text model which
performs well on few-shot tasks [2]–[10]. In recent years, researchers
have made breakthrough progress on single-frame point cloud classi-
fication [11]–[18] by applying CLIP. For example, PointCLIP [12]
projects point clouds onto corresponding 2D images in different
directions, extracts features using CLIP’s visual encoder, and aligns
features with textual labels utilizing an adapter. Building upon Point-
CLIP, PointCLIPv2 [11] enhances the projection method and employs
prompts from GPT [19] to further reduce the feature gap between
point clouds, images, and text. CLIP2Point [13] introduces a renderer
to make point clouds resemble their accurate image representations
more closely.

Traditional fully trained networks [20]–[25] cannot effectively
handle point cloud action recognition tasks. As illustrated in Figure
1a, for an “unseen” action category, the network cannot make an
accurate judgment on the sequence. The CLIP-based single-frame
point cloud classification methods above provide a new paradigm for
point cloud action recognition. However, directly using them for point
cloud action recognition will cause severe transfer degradation.

Figure 1(b) shows the typical process of directly applying CLIP-
based single-frame point cloud classification methods to point cloud
action recognition tasks and its shortcomings. First, the 3D point
cloud sequence is projected onto a 2D image sequence (For simplicity
in drawing, we assume the number of views to be 1), which is then
processed by a visual encoder to extract features. Next, candidate
labels are processed through a text encoder to extract their feature.
The similarities between the feature extracted from the 2D image
sequence and the candidate labels are then calculated, and the label
which has the highest similarity is exactly the predicted label.
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National Key Research and Development Program of China under Grant
No.2023YFB4502701. The corresponding authors are Jiguang Wan from
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Xiaoyang Qu from Ping An Technology (Shenzhen) Co., Ltd. (quxi-
aoy@gmail.com). ∗Equal Contribution.

Fig. 1: (a) The traditional fully trained network cannot make an accurate
judgment on an unseen label category. (b) The CLIP-based single-frame
method is directly used for action recognition, where “side kick” is the
true action label. However, the extracted feature has almost the same
similarity to “side kick” as it does to other labels.

However, the point cloud action sequence has temporal features,
while projecting each frame in the sequence onto a 2D image would
result in the loss of them. This leads to poor similarity between
the extracted features and the candidate action labels. In Figure 1b,
this manifests as nearly identical similarity between the feature of
each candidate action label and the point cloud sequence, making
the model hard to distinguish the correct label.

To address this problem, this paper proposes PointActionCLIP,
which is a triple-path structure CLIP. The first path is the label path,
where the action label names are placed into handcrafted templates
and then encoded by CLIP’s pre-trained text encoder to obtain the
label feature. The second path is the image path. we project every
single frame point cloud in the original point cloud sequence onto
a depth map. Then, we use the original visual encoder in CLIP to
extract the features of the projected images sequence. We further
design a temporal encoding transformer, which merges the extracted
feature at various time steps within the image sequence. We call the
output of the temporal encoding transformer the image feature, and
we use an adapter to align the modalities of the image feature and the
label feature. The third path is the sequence path. We use a pre-trained
point cloud sequence encoder to extract the spatiotemporal feature
from the original point cloud sequence, which is called the sequence
feature. Then, we also use an adapter to align the sequence feature
with the label feature. Image feature can reflect the morphological
characteristics of the action represented by the point cloud sequence,
while sequence feature reflect the spatiotemporal characteristics of
the original point cloud sequence. Finally, we fuse the output of the
three paths to obtain the predicted action label.

To sum up, our contributions can be summarized as:

• This paper proposes a new triple-path structure CLIP, called
PointActionCLIP, which can effectively avoid the transfer degra-IC
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Fig. 2: The overall architecture of our PointActionCLIP. Our PointActionCLIP is a triple-path structure, each of which processes the original point
cloud sequence, the projected images, and the label prompts, respectively. (a) The sequence path uses a pre-trained point cloud sequence encoder to
extract the spatiotemporal feature from the original point cloud sequence. (b) The image path projects every single frame point cloud onto a depth
map ((For simplicity in drawing, we assume the number of views to be 1), extracts features through CLIP’s visual encoder, and uses a temporal
encoding transformer to merge temporal features. (c) The label path uses CLIP’s text encoder to obtain the text feature. (d) We fuse the output of
the three paths to get the predicted action label.

dation issue in point cloud action recognition.
• PointActionCLIP employs the image path to capture the mor-

phological characteristics of the action represented by the point
cloud sequence.

• PointActionCLIP uses the sequence path to capture the spatio-
temporal characteristics of the original point cloud sequence.

• Extensive experiments on various standard datasets prove that
PointActionCLIP has better performance than current state-of-
the-art (SOTA) point cloud action recognition methods.

II. METHOD

A. Architecture Overview

The overall architecture of our PointActionCLIP is shown in Figure
2. Our PointActionCLIP is a triple-path structure. For the input point
cloud sequences, we first input several candidate action labels to the
label path. Then, we input these point cloud sequences into the image
path and the sequence path, respectively. Finally, we fuse the output
of the three paths to obtain the predicted action label.

B. The Label Path

We place M action label names into a handcrafted template: “a
point cloud sequence of [CLASS]” to form several label prompts,
which are then encoded by CLIP’s pre-trained textual encoder to
get the final label feature Flabel ∈ RM×C , where C is the output
dimension of the text encoder for each label prompt.

C. The Image Path

Given the input point cloud dataset S =
{
Si

}|S|
i=1

, where Si ∈
R3×P×T represents a point cloud sequence, the P and T represent
the number of points in each frame and the number of frames in the
point cloud sequence respectively. Initially, We project each frame
in the point cloud sequence Si onto a depth map. The projected
images path is denoted as Gi =

{
gi1, g

i
2, . . . , g

i
T

}
. Then, we use

CLIP’s visual encoder to extract the feature of this projected images
sequence. We denote the extracted feature as F i

G ∈ RT×C . This
feature does not contain the temporal information of the sequence,
so we design an additional temporal encoding transformer to enable it
to understand the temporal information of the entire sequence. Next,
we will introduce the temporal encoding transformer in detail.

The temporal encoding transformer consists of an input encoder
and several self-attention blocks. For the tth image F i

t in the
projected image sequence Gi, the input encoder uses its position
subscript t to encode its temporal information, where 1 ≤ t ≤ T .
The length of the encoded vector is C, where the jth component is:

PV i
t,j =

{
sin (ωjt), if j ≡ 0 (mod 2)
cos (ωjt), if j ≡ 1 (mod 2)

(1)

where ωj =
1

100002j/C
and j = 0, 1, 2, . . . , C. Through the above

formula, we can get our position vector P i ∈ RT×C as:

P i = ({(PV i
0,0), . . . , (PV i

0,C)}, . . . , {(PV i
T,0), . . . , (PV i

T,C)})
(2)

We add this position vector element-wise to F i
G to get the encoded

feature Ii, which is the input of the following self-attention module.
Then, we use self-attention block [26] to process Ii. Self-attention
can help each image in the projected images sequence learn its
relationships with images from different positions in the sequence,
thus capturing the implicit temporal information within the sequence.
We pass Ii through several self-attention blocks and get the final
output called the image feature.

To align the modalities of 2D images and text, We further add a
learnable adapter after the temporal encoding transformer to process
the image feature. This adapter consists of two linear layers and
a LayerNorm. We denote the aligned image feature as F i

image ∈
R1×C .

D. The Sequence Path

We input the original point cloud sequence Si to a sequence
encoder to capture its spatiotemporal feature. We choose the PST-
Transformer as the network backbone of our sequence encoder, which
is pre-trained on other point cloud sequence datasets (For example, if
it is tested on the MSR-Action3D dataset, then it is pre-trained on the
NTU RGB+D dataset). We call the output of the sequence encoder
the sequence feature, which is denoted as F i

S ∈ R1×D , where D is
the output dimension of the sequence encoder. Through the sequence
encoder, we can directly capture the spatiotemporal feature from
the original point cloud sequence, avoiding the influence of image
projection.
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TABLE I: Accuracy performance (%) comparison between PointActionCLIP and SOTA 3D point cloud sequence networks on MSR-Action3D, NTU
RGB+D 60 and NTU RGB+D 120. Our PointActionCLIP shows consistent superiority to other models under 4, 8, and 16-shot settings.

Setting Method MSR-Action3D NTU RGB+D 60 NTU RGB+D 120
Cross-view Cross-subject Cross-view Cross-subject

4-shot

PSTNet++ [27] 77.92 78.19 73.64 73.59 70.13
SequentialPointNet [28] 76.30 78.55 73.10 75.52 70.25

P4Transformer [29] 69.15 71.16 66.13 68.61 64.72
PST-Transformer [30] 70.50 72.55 68.44 69.75 66.80

KiNet [31] 79.80 79.88 74.32 75.02 70.21
3DInAction [32] 80.47 80.32 75.03 76.14 71.95
PointActionCLIP 81.69 83.07 77.36 79.87 76.17

8-shot

PSTNet++ [27] 85.75 89.15 84.16 83.63 79.87
SequentialPointNet [28] 85.94 88.35 84.35 84.54 80.73

P4Transformer [29] 84.61 86.99 82.07 82.54 78.79
PST-Transformer [30] 87.52 89.98 84.89 86.41 81.49

KiNet [31] 83.84 89.77 84.25 86.23 81.47
3DInAction [32] 86.20 90.33 85.21 87.43 82.38
PointActionCLIP 90.67 93.23 87.95 89.53 84.43

16-shot

PSTNet++ [27] 87.40 89.86 85.77 86.29 82.38
SequentialPointNet [28] 87.59 90.06 86.96 86.49 81.57

P4Transformer [29] 86.24 88.67 83.65 85.15 80.30
PST-Transformer [30] 88.21 90.69 85.56 87.09 82.13

KiNet [31] 91.92 93.79 87.23 88.84 84.12
3DInAction [32] 88.22 91.34 86.45 88.72 83.46
PointActionCLIP 92.42 95.02 89.65 91.25 86.06

Fig. 3: The respective recognition accuracy of each path and the impact of different α settings for the fusion accuracy on MSR-Action3D, NTU
RGB+D 60 and NTU RGB+D 120.

Similarly, to align modalities of the 3D point cloud and text, we
add a sequence adapter to further process the cloud feature. This
adapter has the same network structure as the adapter in the image
path, including two linear layers and a LayerNorm. We denote the
aligned sequence feature as F i

sequence ∈ R1×C .

E. Triple Path Fusion

Finally, we fuse the three paths to obtain the final predicted action
label. Specifically, we compute the similarity between the aligned
image feature feature and the label feature. The similarity formula is
as follows:

simi
image =

F i
image · Flabel

||F i
image|| × ||Flabel||

(3)

where ||F i
image|| and ||F i

label|| denotes the L2 norms of the projected
images feature and the label prompt feature, respectively. We use the
cross entropy loss function to calculate the loss between simi

image

and the one hot action labels vector, which is denoted as Losst2v .
Similarly, we compute the similarity between the aligned sequence
feature and the label feature as simi

sequence. We also use the cross
entropy loss function to calculate the loss between simi

sequence and
the one hot action labels vector, which is denoted as Losst2s.

simi
image pays more attention to the overall temporal character-

istics of the point cloud sequence, while simi
sequence pays more

attention to the difference of the point cloud frames belonging to
various action categories. These two similarities are complementary.

During training, we train the image feature and the sequence feature
separately using different loss functions so that they can be aligned
to the final label prompt word simultaneously. During inference, we
use a hyper-parameter α to weight and add these two similarities as
follows:

logitsi = αsimi
sequence + (1− α)simi

image (4)

Our final label probability vector will be obtained by a softmax
function:

pi =
{
pij

}M

j=1
=

exp(logitsij)∑M
m=1exp(logits

i
m)

(5)

where the label with the highest probability in pi will be chosen as
the predicted action label.

III. EXPERIMENT

A. Experiment Setup

Dataset. We use two widely-used standard public datasets: MSR-
Action 3D [33] and NTU RGB+D [34]. MSR-Action 3D contains 567
videos and 23k frames, belonging to 20 different action categories.
The action categories cover common actions in daily life, such as
shaking hands, waving, running, jumping, etc. NTU RGB+D 60 [34]
is a commonly used human action recognition dataset, including
56,880 videos composed of 60 action classes. NTU RGB+D 120
[35] is an extended version of NTU RGB+D 60 with an additional
60 extra action classes and contains 114,480 videos.
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Fig. 4: UMAP figure of feature distributions on MSR-Action3D. (a)
Directly using the CLIP-based single-frame point cloud classification
method. (b) PointActionCLIP without image path. (c) PointActionCLIP
without sequence path. (d) PointActionCLIP.

Baselines. We compare PointActionCLIP with 6 SOTA point cloud
action recognition methods: PSTNet++ [27], SequentialPointNet [28],
P4Transformer [29], PST-Transformer [36], KiNet [31] and 3DInAc-
tion [32], where P4 Transformer and PST-Transformer are based on
self-attention mechanism, and the other four methods are based on
traditional convolutional networks.
Implementation Details. Since the number of frames and points in
each sequence in the datasets is different, we need to preprocess
them. For each sequence, we sample 24 frames equidistantly. For
each frame of the point cloud in the sequence, we sample 2048 points
using the Farthest Point Sampling algorithm. Besides, in the image
path, we project each frame in the point cloud sequence to obtain a
depth image of size 224×224. We choose ResNet-101 [37] and PST-
Transformer [30] as the network backbones of our visual encoder and
sequence encoder, respectively.

B. Performance

As shown in Table I, we present the performance of our PointAc-
tionCLIP and compare it with the baseline methods mentioned
above. As we can see, our triple-path structure PointActionCLIP
achieves the best results on the three datasets, especially in the 4-shot
setting. Specifically, our method improves the accuracy by 5.20%,
4.24%, and 3.98% on average compared to other methods in the 4-
shot, 8-shot, and 16-shot settings, respectively. This is because our
method captures the temporal feature of the projected 2D images
sequence and the spatio-temporal feature of the original point cloud
sequence. Additionally, our method utilizes CLIP, which performs
exceptionally well in few-shot tasks. Therefore, when there are fewer
training samples, PointActionCLIP can perform much better than
other methods. As the number of training samples increases, the
lead of our method decreases slightly, but it still has the highest
recognition accuracy among all methods.

C. Ablation study

We examine the recognition accuracy of our method without the
image path and without the sequence path, and the accuracy of the
whole method with different parameter α. As illustrated in Figure 3,
on the three datasets, the recognition accuracy of our method without
the image path is always 3% - 7% higher than that of the method
without the sequence path. This is because for point cloud action
recognition tasks, sometimes the depth maps projected by different
action categories are roughly the same, which means that the spatial

structure information of the original point cloud is more important
to the final result.

TABLE II: Accuracy performance (%) of different network backbones of
the sequence encoder on MSR-Action 3D.

Method PSTNet P4Transformer PST-Transformer

w/o Image Path 75.85 76.63 81.23
w Image Path 87.10 86.24 92.42

TABLE III: Accuracy performance (%) of different network backbones
of the visual encoder on MSR-Action 3D. RN50 and ViT-B/32 denote
ResNet-50 and vision transformer [38] where each patch has a size of
32×32, respectively. RN50×16 is a variant of ResNet-50 with 16 times
more computations.

Method RN50 RN101 ViT/32 ViT/16 RN50x4 RN50x16

w/o Sequence Path 76.63 78.53 75.49 76.88 77.07 77.36
w Sequence Path 91.18 92.42 89.34 90.47 89.32 91.04

To further visualize the influence of the image path and the
sequence path in PointActionCLIP, we present the feature distribution
of the inference results on the MSR-Action3D dataset using UMAP
[39] (a visualization algorithm) in Figure 4. Figure 4(a) shows the
results of directly using the CLIP-based single-frame point cloud
classification method, where the feature vectors of different categories
are completely mixed together, indicating that the model is unable to
distinguish the true action labels to which these point cloud sequences
belong. Figure 4(b) and Figure 4(c) respectively show the cases
of PointActionCLIP without the image path and PointActionCLIP
without the sequence path. From the figures, it can be seen that
without either of the two paths, PointActionCLIP can somewhat
distinguish the true action labels of these point cloud sequences, but
it still cannot achieve complete separation, as some sequences are
misclassified into other labels (corresponding to a few scattered points
of a different color in densely packed regions of a certain color in the
figures). Figure 4(d) shows the case of the complete PointActionCLIP,
where it can be seen that these point cloud sequences are fully
distinguished. These experiments demonstrate the effectiveness and
necessity of our image path and sequence path.

Finally, we conduct ablation experiments to prove the effectiveness
of the image path and the sequence path given the parameter α =
0.6. For the sequence path, we conduct ablation experiments with
different backbones of sequence encoders. The experimental results
are shown in Table II. It can be seen that, whether with or without
the image path, PST-Transformer achieves the highest recognition
accuracy. For the image path, as shown in Table III, we explore
the impact of different network backbones of the visual encoder. The
table illustrates that, whether with or without the sequence path, using
RN101 as the visual encoder network backbone achieves the highest
recognition accuracy.

IV. CONCLUSION

We propose a triple-path CLIP method for point cloud action
recognition named PointActionCLIP to prevent CLIP’s transfer ac-
curacy degradation. Our method is a triple-path structure, where
each path processes the original point cloud sequence, projected
images sequence, and label prompts, respectively. Finally, we fuse
the output of the three paths to achieve the predicted action label.
We conduct extensive experiments on several standard point cloud
action recognition datasets. Compared to other SOTA point cloud
action recognition methods, our PointActionCLIP achieves the best
performance in different settings.
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