Home
People
Events
Research
Publications
Contact
News
More
深度伪造音频生成与鉴伪技术综述
Zhiping Zeng
,
Xulong Zhang
,
Xiaoyang Qu
,
Chunguang Xiao
,
Jianzong Wang
Last updated on Aug 21, 2025
Cite
深度图表示学习:方法、应用与挑战
Xulong Zhang
,
Xiaoyang Qu
,
Chunguang Xiao
,
Jianzong Wang
Last updated on Aug 21, 2025
Cite
视频深度伪造检测的泛化性问题:方法、挑战与技术进展
Junjie Li
,
Jianzong Wang
,
Xulong Zhang
,
Xiaoyang Qu
Last updated on Aug 21, 2025
Cite
Graph Contrastive Learning with Decoupled Augmentation
Graph contrastive learning based on augmentation strategies has recently demonstrated remarkable performance. Existing methods …
Shihao Gao
,
Caoshuo Li
,
Cunli Mao
,
Xulong Zhang
,
Xiaoyang Qu
,
Taisong Jin
,
Jianzong Wang
PDF
Cite
IEEE
Homogeneous Graph Extraction: An Approach to Learning Heterogeneous Graph Embedding
Heterogeneous Graph Neural Networks (HGNNs) aim to embed rich structural and semantic information of heterogeneous graphs into …
Shihao Gao
,
Xiaoyan Yu
,
Yu Cai
,
Xulong Zhang
,
Jianzong Wang
,
Taisong Jin
PDF
Cite
IEEE
PointActionCLIP: Preventing Transfer Degradation in Point Cloud Action Recognition with a Triple-Path CLIP
Directly applying CLIP to point cloud action recognition can cause severe accuracy collapse. In this paper, we propose PointActionCLIP, …
Wei Tao
,
Shenglin He
,
Xiaoyang Qu
,
Jiguang Wan
,
Jianzong Wang
PDF
Cite
IEEE
VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection
As object detectors are increasingly deployed as black-box cloud services or pre-trained models with restricted access to the original …
Bin Zhang
,
Xiaoyang Qu
,
Guokuan Li
,
Jiguang Wan
,
Jianzong Wang
PDF
Cite
arXiv
IEEE
ACCon: Angle-Compensated Contrastive Regularizer for Deep Regression
In deep regression, capturing the relationship among continuous labels in feature space is a fundamental challenge that has attracted …
Botao Zhao
,
Xiaoyang Qu
,
Zuheng Kang
,
Junqing Peng
,
Jing Xiao
,
Jianzong Wang
Cite
arXiv
RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle …
Bin Zhang
,
Jinggang Chen
,
Xiaoyang Qu
,
Guokuan Li
,
Kai Lu
,
Jiguang Wan
,
Jing Xiao
,
Jianzong Wang
Cite
arXiv
Incremental Label Distribution Learning With Scalable Graph Convolutional Networks
Label Distribution Learning (LDL) is an effective approach for handling label ambiguity, as it can analyze all labels at once and …
Ziqi Jia
,
Xiaoyang Qu
,
Chenghao Liu
,
Jianzong Wang
Cite
arXiv
«
»
Cite
×